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Abstract—This paper develops a framework for locally
deforming either a parametric surface or hierarchical sub-
division surface to match a set of positional and energy
minimizing constraints. The positional constraints can be
obtained from a wide variety of existing interfaces, and the
framework produces a smooth, local and stable deformation
through solving a simple local least-squares. We use an
indexing scheme to localize optimization to only contributing
control points. These points are found and measured by using
basis functions or by tracking subdivision mask operations.
We demonstrate our framework on B-spline and Loop
subdivision surfaces.
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division; least-squares;

I. INTRODUCTION

There is an ever present need for modelers to make
changes to surfaces during design and creation phases.
This task comprises so much of the modeling pipeline that
it is important to streamline it as much as possible. The
traditional modeling technique of changing many surface
“control points”, however, is a time-consuming process
which requires understanding of the surface representation
and may not be the best match the modeler’s intention.

A paradigm change to constraints is one method for
overcoming the drawbacks of control points as a defor-
mation model. Rather than directly manipulating many
surface-defining elements, a constraint model specifies
how the final surface ought to ideally behave (for example,
its final position or smoothness) and then finds the surface
representing the best match. This is preferable to adjusting
control points for many reasons. For instance, it may
be difficult for the modeler to even accurately determine
which control points need to be moved to achieve a
desired change, and the traditional method often requires
several non-trivial, time-consuming adjustments until the
deformation is visually acceptable.

In this paper, we develop a robust constraint-based
framework for the smooth, local deformation of a surface
represented as a parametric patch or with a subdivision
hierarchy. The generality of our approach, plus the realiza-
tion of a fast, local and smooth deformation, are our novel
contributions to the field; we develop a tunable paradigm
which works with two important surface representations
and many existing interfaces, and we achieve fast defor-
mations on local areas regardless of the overall size of the
surface. Our method uses both positional 3D constraints,
as well as energy minimization constraints. The method

for obtaining the positional constraints is not described in
depth, as our framework is not dependent on any particular
constraint generation technique. They may result from a
3D scan of an object, or they can be generated from a
wide variety of existing interfaces [1].

Finding a deformation which “nicely” matches a set of
positional constraints is a difficult problem. The deforma-
tion must be smooth and stable with a large number of
constraints, should only affect a local area of the surface,
and the framework still must operate on the surface’s
inherent representation. The framework is responsible for
deciding which control points should be involved in the
deformation; choosing points which are “near” to the
constraints is ideal, but choosing the wrong set can lead
to instabilities and loss of locality (Section IV-A).

Given a set of involving control points, the process
is then to move these points to best match the given
positional constraints. To control the shape and ensure
smooth deformations, we place additional energy con-
straints on the system and solve a combined local least-
squares system at interactive rates.

II. RELATED WORK

Techniques to deform surfaces that are not based on
constraints have been developed in the literature for
many surface representations (e.g. [2], [3], [4]). These
approaches are often tied directly to a particular surface
representation.

The use of constraints to perform deformations has
been well-researched in both the parametric and mesh
domains, though in the past it has been difficult to develop
a constraint-based system in the subdivision context [5].
Hu et al. [6] provide a method for moving a rectangular
grid of control points on a parametric surface to match
a set of constraints with specified normals. Cheutet et
al. [7] encounter a similar energy problem as described
in Section IV-B and minimize its effects by removing
boundary constraints from the system. Forsey and Bartels
[8] fit hierarchical splines with arbitrary basis functions to
constraints that conform to a certain “gridded” structure.

In the mesh context, Sorkine and Cohen-Or’s least-
squares meshes [9] has similarities to our work, though
they operate on a mesh with only connectivity information.
Certain key vertices near important features are marked as
soft constraints, and then the position of every vertex in the
mesh is solved through a least-squares system. Each vertex
matches to exactly one constraint. LS-meshes can be used



in the context of mesh editing, though not with subdivision
surfaces. Nealen et al. [10] improve on LS-meshes in a few
ways. Constraints are now expressed through barycentric
coordinates and they make use of the cotangent-weighted
Laplacians, arguing that it helps create smooth tangents in
large deformed areas.

Fibermesh [11] builds models from scratch through the
sketching of “defining” curves that are used as constraints.
They have chosen to use non-linear optimization of a
curvature-based energy functional, which is slower than
least-squares solutions. At any time, constraints can be
added or modified, but when this is done the entire system
is resolved and a new mesh is created, which may be quite
different from the old mesh in areas not near to the new
constraints. This is one reason a local least-squares system
is attractive.

Litke et al. [12] discuss fitting a subdivision surface to
a given shape using a quasi-interpolation approach which
avoids least-squares calculations. Their approach modifies
traditional subdivision surfaces, while our method works
on standard surfaces and can be directly ported into exist-
ing modeling packages. We also handle irregular meshes
without special heuristics and gain more control over the
deformed shape with an energy term.

Marinov and Kobbelt [13] develop a technique for fit-
ting a global subdivision surface to a cloud of data points.
Their technique iteratively minimizes two norms which
prevents real-time results and they heavily change the
topology of the mesh which does not suit our application.
It is also a requirement for their initial mesh to “be close”
to the data points in order to have fast, accurate fitting.

For further reading, see the surveys produced by Botsch
and Sorkine [5], Sorkine [14], and Pusch [1].

III. DEFORMING PARAMETRIC CURVES

A. Global Deformation

While our final goal is to deform surfaces locally to
match constraints, we briefly outline the global 2D curve
example using least-squares to ease the notational burden
and provide a clear base for the extension to surfaces. For
a more detailed look at this technique, see [15] and [16].

Given a set of positional constraints X = {X0, . . . , Xn}
and a B-spline curve Q(u) =

∑m
i=0Bi(u)Pi with initial

control vertices P = {P0, . . . , Pm}, the goal is to adjust
each point in P such that the resulting curve very closely
matches X, with m << n. The set D = {∆0, . . . ,∆m}
contains unknown deformation vectors which are added to
the corresponding point in P to achieve this. Denote the
set P̃ to be the set of deformed control points, where P̃i =
Pi + ∆i, and denote Q̃(u) to be the curve defined by P̃.
U = {u0, . . . , un} are parameter values that correspond
to X; we use arclength parameterization.

Perfectly matching Q̃(u) to X is an overdetermined
configuration. Therefore, we use least-squares minimiza-
tion on the error function:

E(∆0, . . . ,∆m) =
n∑

i=0

(
Q̃(ui)−Xi

)2
.

If b is an n+ 1-length vector with bi = Xi −Q(ui), we
can redefine this error function using vector and matrix
operations:

E(D) = (BD− b)T (BD− b) = ||BD− b||22. (1)

The minimizer of this function can be found by solving
the normal equation [17]:

BT BD = BT b. (2)

BT B is an m+ 1-square symmetric and semi-positive
definite matrix [16], where B contains each basis function
evaluated at each parameter ui ∈ U ; Bi,j = Bj(ui).
Solving for D produces a curve Q̃(u) that matches X
with the least error.

B. Local Deformation

To create local deformations, we introduce fixed control
points so only a part of the curve is allowed to move.
Define a set of integers S = {s0, . . . , sk} ⊆ {i | 0 ≤
i ≤ m} to be the indices of those control points selected
for movement. Methods for choosing S vary and will be
outlined in Section IV-A.

The final system of equations remains the same as
Equation (2), though B is modified to contain only those
basis functions which belong to points in S and BT B is
now k + 1-square.

IV. DEFORMING PARAMETRIC SURFACES

Moving from curves to surfaces requires special atten-
tion in a number of areas. For example, indexing into
Q(u, v), a tensor product surface, traditionally requires
two indices, which causes trouble for our previous deriva-
tions. This can be avoided by imposing a 1D indexing
I : R2 → R on the surface, such as row-major order.
If I(s, t) = i, then defining the 2D basis function
Bi(u, v) = Bs(u)Bt(v) allows us to rewrite the definition
of Q(u, v) with 1D indexing: Q(u, v) =

∑
iBi(u, v)Pi.

This allows the system derivation to follow as per
Section III-B, with each 3D constraint Xi having a pa-
rameterization (ui, vi) ∈ U obtainable through projection
onto Q(u, v). The final system from Equation (2) still
holds, where B is further modified to contain the 2D basis
functions. The fact that each Bi is a basis function of the
associated spline space ensures that B is full rank. BT B
is still symmetric and now strictly positive definite due
to S preventing columns of zeros (Section IV-A), but no
longer banded due to the nature of I . Software solutions
such as UMFPACK [18] may be used to solve the system
quickly.

A. Selecting the Set S

Proper selection of S in the surface context is crucial
to the stability of the system. In order to have a solution,
BT B must not contain a row or column of all zeros. This
implies we cannot choose i ∈ S such that Bi(uk, vk) = 0
for all 0 ≤ k ≤ n. Conceptually, we must select only con-
trol points for movement that are “near” the constraints’
parameterizations, or find the control points that contribute



to the surface around the constraints. Virtually all choices
for S in the curve examples did not experience this
singularity due to the nature of arclength parameterization,
but choosing S in the surface context is not a task that can
fall to the modeler.

We choose S by moving through each parameter
(u, v) ∈ U and choosing the basis function which has
maximal support in the u- and v-directions. The movable
set surrounding the constraints is small (Figure 1) yet
still sufficient to match the constraints, and the system
is much more stable and local than choosing all non-zero
basis functions. By selecting control points through the
evaluation of the basis functions, choosing S relies less
on visual heuristics and is independent of which basis
functions the surface representation uses.

Figure 1. The same set of blue constraints are given, and the selected
set S is shown in red. Left: Choosing only the maximal basis functions.
Right: Choosing all non-zero basis functions.

B. Energy Minimization

Further control over the shape of the deformation is
needed to eliminate areas of high curvature which result
from non-regularized least-squares solutions. We introduce
an energy term into the error function whose goal is to
minimize the curvature of the deformed area.

Using complex, non-linear means to evaluate the curva-
ture of a parametric surface [19], [20] is not appropriate
when linear combinations of control points must be iso-
lated. Therefore, we approximate the curvature using the
linear discrete Laplacian operator [14]. A grid of surface
values M can be precomputed at given resolutions to
allow efficient calculation of the Laplacian at a variety
of discrete surface points.

The discrete Laplacians of the region to be deformed
can be used to remove areas of high energy. Those values
in M which contain non-zero contributions from a control
point in S are found, and their parameters are placed in a
set T = {(u0, v0), (u1, v1), . . . , (un̄, vn̄)}. T is similar to
S in that only points in T will be involved in the energy
minimizing system. T contains only surface values which
will change after deformation.

Derivation of the energy term contains familiar elements
to Section III-A. Define a curvature term C, which will
be minimized using least-squares:

C(∆s | s ∈ S) =
∑
t∈T

(
L(ut, vt)

)2
where L is the discrete Laplacian operator. Define a
function Y (t, j), t ∈ T , that mimics L but works on

the jth B-spline basis function instead of 3D points, a
matrix Yi,j = Y (i, j), and a n̄ + 1-length vector y
with yi = −L(ui, vi). The final system which minimizes
curvature is:

YT YD = YT y.

C. The Complete System

The final system needs to minimize E and C simulta-
neously. Define a combined error function as follows:

T (∆s | s ∈ S) = (1− µ)E(∆s) + µC(∆s).

The constant µ ∈ [0, 1] represents the contribution of the
energy to the system. Small µ is biased towards matching
the constraints, and large µ values smoothness.
T (∆s) can be minimized by using µ to combine the

minimizers of E(∆s) and C(∆s). Our final system is:(
(1− µ)BT B + µYT Y

)
D = (1− µ)BT b + µYT y.

Note that because of the properties of the individual
components, (1 − µ)BT B + µYT Y is still a symmetric
positive definite matrix. Figure 2 shows the impact µ has
on the system.

Figure 2. Positional constraints are placed in an “L”-like shape. Left:
µ = 0. Right: µ = 0.9.

V. DEFORMING SUBDIVISION SURFACES

With a solid foundation laid in the parametric domain,
we can examine approaches for deforming subdivision
surfaces. The biggest difficulty when dealing with dis-
crete surface representations is that they are not directly
expressed in terms of basis functions.

A. Basis Functions for Subdivided Objects

Let P0 = {P 0
0 , P

0
1 , . . . , P

0
m} be a base set of “control

points” and Pi = {P i
0, P

i
1, . . . , P

i
m̄i
} be the set after i

levels of subdivision. It is necessary to find a method of
expressing P i

j as a linear combination of the points in P0;
identifying these discretized basis functions allows us to
model subdivision least-squares systems in a familiar way.

Our approach is to track the contribution of the points
on each subdivided set of vertices as the subdivision
occurs. When subdivision is performed, we can also
maintain and store contribution vectors. Each Bl

i, the ith

contribution vector at the lth subdivision level, will be a
vector of m+ 1 values, and the kth element in this vector
will be the contribution to P l

i from the kth point in P0. To
emphasize the meaning of Bl

i, the identity P i
j = Bi

j ·P0

holds.
B0

i is initialized to contain 1 at the ith element, and
zeros elsewhere. When subdivision is performed, we apply



the scheme’s appropriate masks on both the control points
as normal, and also on these contribution vectors using
standard vector arithmetic. This generates vector-based
discrete samples of the underlying basis functions for any
arbitrary subdivision scheme.

This technique is similar to a method discussed in
Marinov and Kobbelt [13], where they use Stam’s eval-
uation algorithm [21] to directly find the subdivision
basis functions on the limit surface. We have chosen to
keep discrete vectors representing the basis functions at
a given subdivision level for two reasons. Firstly, it is
very cheap to obtain these vectors during subdivision, and
on most meshes, the minor accuracy improvement Stam’s
algorithm offers is not worth the cost. Secondly, we prefer
to operate on distinct levels of the subdivision hierarchy,
rather than the limit surface, as it better fits with practical
multiresolution editing.

It is worth emphasizing that the techniques developed
throughout this section can still apply directly to a mesh
with no subdivision information by simply setting h = 0.
As such, this research is an important generalization of
many standard mesh techniques, as it can also apply to a
subdivision hierarchy by increasing h as needed.

B. Deriving the Surface System

A base mesh with vertices P0 = {P0, P1, . . . , Pm}
is loaded, and is subdivided h ≥ 0 times to obtain Ph

and its corresponding contribution vectors Bh; each point
Ph

i has an associated m + 1-length vector Bh
i such that

Ph
i = Bh

i ·P0. The 3D constraints X = {X0, X1, . . . , Xn}
have matching parameterizations U = {u0, u1, . . . , un},
where each ui is a triple containing the barycentric
coordinates where the projection of Xi landed on Ph;
specifically, ui = (uai

i , u
bi
i , u

ci
i ), where ai, bi, and ci are

the intersecting triangle’s vertex indices into Ph. We can
parameterize both the surface and the contribution vectors
using these barycentric coordinates:

Ph(ui) = uai
i P

h
ai

+ ubi
i P

h
bi

+ uci
i P

h
ci

Bh(ui) = uai
i B

h
ai

+ ubi
i B

h
bi

+ uci
i B

h
ci

such that the identity P i(u) = Bi(u) ·P0 still holds.
S and D are the selected control points in P0 and the

resulting deformation vectors, respectively. Choosing S
still entails selecting points “near” the constraints. Each
constraint Xi intersects a face on Ph, and this face was
subdivided from a parent face on P0. Each vertex on
this parent face is tagged for movement and placed in S.
This ensures that each selected vertex contributes to some
parameter.

We minimize the energy function

E(∆s | s ∈ S) =
n∑

i=0

(
Ph(ui)−Xi

)2
by solving BT BD = BT b as before, where bi =
Xi − Ph(ui). The entry Bi,j = Bh(ui)[sj ] is the linear
contribution of the jth marked control point to the ith

constraint’s parameterization.

The energy term must be brought into the subdivision
surface formulation, and the discrete Laplacian can once
again be used. Given the surface-specific notation, the
derivation can follow as per Section IV-B. The set T is
comprised of those vertices in Ph whose parent face in
P0 contains a vertex in S.

The energy term also has a regularizing effect on the
shape of the triangles, which has been seen in other works
[9], [22]. Our approach nicely extends such techniques to
work in the context of a subdivision hierarchy.

VI. RESULTS

Figure 3. Constraints are added to fill the space on the surface as
indicated by a closed sketch.

To input positional constraints, we use a direct sketching
tool as demonstrated in Figure 3 and adjust the constraint
heights in a hill-like fashion using the mouse wheel. All
deformations in this section were computed and adjusted
at interactive rates. Figure 4 shows some simple deforma-
tions on a flat surface. Figure 5 shows how our framework
can be used to create details on existing surfaces and
construct models from simple shapes.

Figure 4. Creating a leaf and writing some letters onto a subdivision
surface. The constraints for the veins of the leaf and the letters were
generated using an etch tool, which placed constraints on the surface to
match a user’s mouse movement.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a framework for performing fast,
local deformations using both positional and energy con-
straints on parametric and subdivision surfaces. Finding
contribution vectors as a type of discrete basis for subdivi-
sion surfaces allows us to elegantly transform the problem
from the parametric domain to the subdivision domain.
The problem of high-energy deformations is solved by
introducing an energy minimization term to the least-
squares system. The work nicely combines deforming
parametric and subdivision surfaces under one tunable
paradigm and can be adapted to work with a variety of
existing interfaces with which modelers are familiar. The



Figure 5. Top: Starting with a cylinder, we create the rim of a tire.
Middle: A flat mesh becomes a cowboy hat. Bottom: A face is created by
using both standard (eyes, mouth) and non-trivial (nose, horns) constraint
height functions.

local nature of our approach ensures fast deformations
regardless of the size of the surface.

There are several branches for future work. One ex-
ample is support for sharp features. The energy term
produces a smoothing effect that may not always be
desired on particular areas of the surface, and how to
introduce sharp features on non-trivial iso-curves of B-
spline surfaces is not immediately clear, even with knot
insertion techniques. It is worth investigating the results
when applying different types of constraints other than
soft, such as hard or weighted constraints or constraints
on the multiresolution details. Examining this framework’s
role in a fully-functional multiresolution modeling pack-
age is also desirable.
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