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Ribbons
A representation for point clouds

Abstract Point clouds are usually represented either
globally as surfaces or locally based on a small neighbour-
hood. We propose an intermediate representation called
ribbons obtained by partitioning a point cloud into one
dimensional strips. This representation is well suited to
the placement of strokes for non-photorealistic purposes
and can be rendered efficiently using quad strips. Meth-
ods for performing hatching, cross hatching, and silhou-
ette renderings are presented. Ribbons also allow for the
application of curve based operations to the point cloud,
this is demonstrated using reverse subdivision.

Keywords Point Clouds · Point Based Rendering ·
Non-Photorealistic Rendering · Geometric Modeling

1 Introduction

The digitization of real world data often produces point
clouds. The increasing availability of point cloud data
has made it necessary to develop techniques to process
and manipulate unorganized point cloud data. Over the
past decade point based modeling has developed into a
new paradigm in computer graphics

Point cloud research initially focused on converting
point samples data to better understood representations,
such as signed distance functions[9], polygon meshes[2],
and projective surfaces[12,1]; allowing for the applica-
tion of existing techniques in mesh and implicit mod-
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els to point clouds data. An alternative approach is to
work with the point cloud directly, without imposing
the topological and geometric constraints of other rep-
resentations. Consequently, we can categorize most of
the current representations to global or local. In global
representation, the point cloud is modeled as a single
surface[2,7] as opposed to the local that rely entirely
on the point as individual objects (perhaps using the k
nearest neighbours for determining the normal)[22]. Al-
though, the local representation allows for greater flexi-
bility, its lack of suitable connectivity justifies the efforts
that have been put for extracting global (surface) rep-
resentations for many applications. In fact the selection
of the representation (local versus global) is an impor-
tant task and depends on the application and practical
requirements. The spectrum from points to surfaces is
wide enough to include other intermediate representa-
tions. Some of these representations might be best fit to
particular applications. For example, feature lines (such
as silhouette, curvature, etc) play an important role for
artistic drawing of the object. These feature lines require
a kind of connectivity beyond that of just point samples,
but on the other hand a surface seems to be an over-
representation for this task. In this work, we propose a
new representation, ribbons, that lies somewhere between
the extremes point-based and surface-based representa-
tions. This representation is particularly suitable for the
applications such as non-photorealistic rendering that re-
quire working on lines on the object

Our method partitioned the point cloud into one di-
mensional long strips called ribbons by connecting local
parameterizations computed at each point. The result-
ing representation can be computed efficiently and al-
lows for the direct application of one dimensional op-
erations (demonstrated via the application of forward
and reverse subdivision (§4.1). Additionally, the ribbons
may be rendered to visualize the surface using standard
OpenGL calls to obtain standard OpenGL (§3.3) and
non-photorealitic (NPR) renderings (§4.2)).

(A more accurate RoadMap) The structure of
the paper is as follows: Section 2 provides a discussion



2 Adam Runions et al.

(a) (b) (c) (d)

Fig. 1 Outline of system a.) Input consists of an initial point cloud b.) Local connectivity computed using WPCA c.)
Ribbons generated by following local connectivity d.) Render ribbons directly

of related literature, Section 3 discuses the methodology
applied to construct and render ribbons, the applications
discussed above are outlined with results in Section 4 and
Section 5 outlines future venues of exploration.

2 Preliminaries

2.1 Weighted Principal Component Analysis

Each ribbon is constructed by stitching together local
parameterizations of the point cloud. Local parameteri-
zations take the form of coordinate systems, computed at
each point using the points k nearest neighbours (k-NN).

To include the impact of the distance of points, we
employ a weighted form of principal component analy-
sis[1,16,10]. Weighted principal component analysis (WPCA)
can be derived from principal component analysis by
replacing the mean M with the weighted mean, and
the correlation between two variables with the weighted
equivalent:

Mi =
m∑

i=1

xiw(xi)∑m
i=1 w(xi)

cor(xi, xj) =
m∑

k=1

(xik −Mi)(xjk −Mj)w(xk)∑m
i=1 w(xi)− 1

A WPCA estimate is said to be centred on p∈ <3 if p’s
neighbourhood is used as the sample and p is used in
the weight function w. For a local weighted function, we
employ the one that employed by Levin[12]

w(pi) = e
‖p−pi‖

H2

where the local density estimate H is calculated as

H =
∑

pi∈Np

‖pi − p‖
k

where Np consists of p’s k-nearest neighbours (k-NN) in
the point cloud.

The weighted principal components can be found by
determining the eigenvectors of the covariance matrix C.
Let λ1 ≥ λ2 ≥ λ3 be the sorted eigenvalues of the covari-
ance matrix, and αp1, αp2, αp3 the associated eigenvec-
tors. Then αp1 is the direction of greatest variance in a
neighbourhood of p, αp2 the direction of second greatest
variance, and αp3 the direction minimizing variance[10].

As the point clouds being considered approximate
a 3d surface these vectors have a meaningful geometric
interpretation: αp1 and αp2 estimate the tangent plane
and αp3 the normal to the point cloud at p. This esti-
mates the orientation at each point, from which an order-
ing of the local neighborhood can be inferred. As such,
these three vectors provide a local parameterization of
the point cloud.

2.2 Reverse Subdivision

Sub-division is a method for taking an ordered set of
points, usually along a curve, or surface, and replac-
ing the points with a finer network of points. A multi-
resolution system was developed in [18] by reversing the
rules of a sub-division filter. A short description of the
framework presented by Samavati and Bartels follows.

Assume a set of ordered points describing a surface,
or curve are given; these are called fine points and are
denoted as F . We can use F in order to obtain a smaller
number of points approximating the same curve or sur-
face, these points are called coarse points and denoted
C.

The goal of reverse sub-division is, given F and a
sub-division filter P , to find a filter A that yields C when
applied to F . Inorder to reproduce F a set of details D
is needed, which is created using B derived from P , such
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Fig. 2 Fine points F are decomposed into C and D using
A and B respectively. D and C are then recombined into F
using P and Q respectively.
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Fig. 3 Coarse points are successively decomposed into de-
tails and a new set of Coarser points to obtain a desired
resolution, this process can be reversed as in fig.2 to return
to a higher-resolution representation n

that

BF = D

The filter’s P and Q then constitute the reconstruction
filter and can be used to obtain F from C and D as
follows

F = PC + QD

This discussion is summarized in fig.2. A multi-resolution
system can be created by performing the decomposition
into coarse points and details repeatedly (fig.3).

Implicit in the construction of reverse subdivision,
and subsequently multi-resolution using reverse subdivi-
sion, is the assumption that some ordering of the fine
points, coarse points, and details has been provided. A
criteria that is not met in an unordered point cloud.

2.3 Non-Photorealistic Rendering

Placing strokes on surfaces is an important facet of Non
Photorealistic Rendering (NPR). Strokes are used to pro-
vide visual cues to the viewer, conveying the structure
of the surface in simple terms. Silhouettes, suggestive
contours[6], and creases are often employed to this end.

Silhouettes are a well established NPR visualization
technique[19,17]. In the context of meshes, frame coher-
ence can be an issue. The work of Brosz et al[5] addresses
this problem by varying the width and shading of silhou-
ette lines based on the stability of each line.

The automatic generation of hatching and cross hatch-
ing on surface has also been examined outside the con-
text of point clouds[17,8]. In the work of Pruan et al[17]
and Hertzman et al[8] hatching consists of placing roughly
parallel strokes on the surface whereas cross hatching is
generated by placing two sets of parallel strokes perpen-
dicular to each other.

The application of NPR to point clouds has been
relatively unexplored. Kawata et al[11] proposes a tech-
nique for interactive point based painterly rendering. Xu
et al [20] extract feature points but do not construct
strokes, and Zakaria et al propose a method for dithering
and silhouette extraction which creates strokes in image
space[21]. In contrast to these works the NPR techniques
proposed in this paper address the placement of strokes
directly on the surface, and fit within the point cloud
paradigm.

3 Generating Ribbons

Let P be a point cloud sampled from a 2d manifold
surface embedded in <3 (fig.1a). Ribbons partition the
point cloud into one dimensional strips, maximizing the
length of each ribbon and maintaining a relatively consis-
tent direction improves the results of NPR visualization
and operations performed on the ribbons. Partitioning P
into ribbons relies upon connectivity obtained from local
parameterization (Alg.1 line 2-3, §3.1). P is locally pa-
rameterized by performing WPCA centred on each point
based on its neighbourhood. This provides an estimate
of the local parameterization as discussed in §2.1. The
connectivity of the point p is computed from the vectors
αp1 and αp2 (Alg. 1 line 5, §3.1.2, fig.1b).

With the connectivity at each point defined, the point
cloud is partitioned into ribbons by traversing the local
connectivity (Alg. 1 line 6, §3.2). By following the prin-
cipal directions of variation at each point U-ribbons (fol-
lowing the principal direction of variation) or V-ribbons
(following the secondary principal direction of variation)
can be constructed (fig.1c).

With the exception of the neighbourhood computa-
tion for each point all operations are linear, and may
be implemented efficiently using simple data structures
such as queues and linked lists.

1 For all p ∈ P :
2 Find Np of p
3 Compute αp0 and αp1

4 End For
5 Construct local connectivity of P
6 Compute ribbons from local connectivity

Algorithm 1: High level pseudocode of algorithm for gen-
erating ribbons

3.1 Parameterizing the Point Cloud

3.1.1 Computing the local parameterization

The neighbourhood of p ∈ P is denoted Np and is used
to estimate the tangent plane at p along with the local



4 Adam Runions et al.

(a) (b) (c) (d) (e) (f)

Fig. 4 a.)Initial points b.)k-NN of point set c.)Local coordinate frames (αp1 in orange, αp2 in green d.) local connectivity
e.) Ribbons generated on point set f.) Result of rendering ribbons as described in text

density and connectivity of p. To this end the k-nearest
neighbours (k-NN) of p are used[14,15] (fig.4b).

Np is used to establish a local density estimate for
p. Global density estimates have also been used [12], but
local estimates have been found to produce better results
[14]. Let Hp be the local density estimate at p given
in §2.1 This density estimate is similar to that used by
Pauly et al [14], but takes into account all k-neighbours.
It is possible that the euclidean distance between p and
one of its k-neighbours is small even though the distance
along the surface is quite large and as such should not be
included in Np. To help protect against this possibility
all points in Np further than Hp from p are removed
from Np. As Hp is a local estimate it changes adaptively
across the surface.

Np is used to perform WPCA centred on p to obtain
αp1,αp2, and αp3 the three eigenvectors of the weighted
covariance matrix C. Eigenvalues and vectors can be
computed inexpensively in constant time as C is a 3 by
3 symmetric positive definite matrix. As the formulation
of WPCA uses Hp the locality of the tangent plane esti-
mate varies adaptively across the point cloud.

Vectors αp1 and αp2 provide an estimate of the tan-
gent plane at p. From this two perpendicular lines lp1 and
lp2 are obtained, which when given in their parametric
form are

lp1(t) = p + tαp1

lp2(t) = p + tαp1

The line lp1 then follows the principal direction of vari-
ation and lp2 the second direction of variation. Linear
regressions derived from PCA usually pass through the
mean of the sample, but as we are concerned with the
tangent plane at p, not the mean of Np, the point p is
used in its place.

3.1.2 Orienting tangent planes consistently, and
constructing the local connectivity

The coordinate frames computed for each point should
be closely aligned with neighbouring points, but may dif-
fer slightly or by a sign. The problem of consistently

orienting tangent planes for a point cloud is difficult in
general (see [9] and [13]) but is easily addressed when
ribbons are used due to their linear connectivity.

The tangent planes at each point in P are oriented
by picking unprocessed points randomly from the point
cloud (initially all points are unprocessed). When a point
is chosen it is marked as processed and placed in a queue
(Alg.2 lines 1-4). Provided the queue contains at least
one point, the head of the queue will be processed. Let
h be the point at the head of the queue. Using the vec-
tors αh1 and αh2 the local connectivity of h is computed
(Alg.2 lines 7-10). This process is described in detail in
the following section. The connectivity of h is given by
the points Left(h), Right(h), Up(h) and Down(h).

Once h’s connectivity has been calculated each point
connected to h is processed in order to orient their coor-
dinate frames similarly to h. This helps to maximize the
length of each ribbon.

If k is connected to h but has not yet been processed
then it must be processed. To do this it is necessary to
first orient αk1 and αk2 as close to αh1 and αh2 as pos-
sible while keeping both vectors in the tangent plane at
k. This is done by projecting αh1 and αh2 onto the tan-
gent plane at k to produce αnew1 and αnew2 respectively.
Gram-Schmidt is performed on αnew1 and αnew2 to guar-
antee orthogonality. The vectors new are then used in
place of αk1 and αk2 respectively. The coordinate frames
are visualized for an example point cloud in fig.4c.

As k is now oriented consistently with the neighbour-
ing point h its connectivity can be computed, so it is
added to the queue. Once all the points connected to h
have been processed the process is repeated for the next
point in the queue. The preceding paragraph describes
lines 11-17 of Alg.2. If any point connected to h has not
yet been processed it is added to the queue.

Once all the points connected to h have been pro-
cessed the process is repeated for the next point in the
queue. If all the points in the point cloud are not pro-
cessed in the first pass then a second point is chosen ran-
domly from the point cloud and the process is repeated.

There is no guarantee that the local connectivity of
points will connect all the points in the point cloud. This
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1 Unprocessed := P
2 While p ∈ Unprocessed do:
3 Q.push(p)
4 Unprocessed := Unprocessed− p
5 While Q contains at least one point do:
6 h := Q.pop()
7 Order Np along αh1

8 Calculate Left(h) and Right(h)
9 Order Np along αh2

10 Calculate Up(h) and Down(h)
11 S := {Up(h), Down(h), Left(h), Right(h)}
12 For all k ∈ S do:
13 if k ∈ Unprocessed then:
14 Unprocessed := Unprocessed− k
15 Reorient αk1 and αk2

16 Q.push(k)
17 End if
18 End For
19 End While
20 End While

Algorithm 2: Psuedocode for the procedure creating local
connectivity

allows point clouds representing multiple objects to be
processed without any special considerations.

3.1.3 Creating local connectivity

The local connectivity at a point p is determined by
finding points preceding and following p along the lines
lp1, lp2 which follow the principal directions of variation
at p (illustraited in fig.4d).

Let Nlp1 be the set of points in Np which are closer
to lp1 than lp2 or equidistant from both lines (fig.5(b)).
Once Np has been reduced to Nlp1 it becomes possible to
determine Left(p) and Right(p) by ordering the points
along lp1 and selecting the points preceding and following
p respectively (fig.5 c-d). If no such point exists then p
is selected instead. Determining Up(p) and Down(p) is
similar but uses lp2 in place of lp1 (fig.5e).

To traverse the local ordering, two functions are needed.
The first function nextLR takes two points in a progres-
sion and produces the next point in the same direction
using the local orderings of the points along the princi-
pal direction of variation. The second function nextUD

performs the same function in the secondary direction of
variation. These functions are essential to the chaining
process as they provide the methods necessary to stitch
local orderings together.

3.2 Partitioning the Point Cloud into Ribbons

Using the local connectivity generated in §3.1.2 it is pos-
sible to partition the point cloud into ribbons. U-ribbons
are produced by following the connectivity provided by
Left(p) and Right(p) using NextLR, and V-ribbons by
using the connectivity provided by Up(p) and Down(p)
and NextUD.

The process of creating a set of ribbons is summarized
in Alg.3. It is important to notice that the algorithm
will not terminate until all points have been placed in
a ribbon. When creating ribbons the local ordering at
each point is exploited to maximize the length, whilst
trying to respect the original topology of the surface. The
linking process then serves to connect existing ribbons in
order to create longer ribbons, when possible. The result
of the ribbon generation process can be seen in fig.4e and
fig.1c.

1 Unprocessed = P
2 While p ∈ Unprocessed do :
3 Create ribbon Cp starting at p
4 Link Cp to existing ribbons
5 Unprocessed = Unprocessed− Cp

6 End While

Algorithm 3: Pseudocode for generating a single ribbon

3.2.1 Ribbon Preliminaries

Each ribbon is defined by an ordered set of points and
their respective coordinate frames. The ribbon contain-
ing p is labelled Rp; this notation is well-defined as each
set of ribbons partitions the point cloud. Using this nota-
tion Alg.4 provides the details of the ribboning process,
and corresponds with line 3 of Alg 3. Linking each rib-
bon, as it is produced, to existing ribbons serves to create
longer ribbons (described in §3.2.3). The result is a set
of ribbons

R = {R1, R2, · · · , Rj}
U-ribbons and V-ribbons are denoted RU and RV re-
spectively. To maximize ribbon length the starting point
of each successive ribbon should be as far from points
contained by pre-existing ribbons as possible. Unfortu-
nately, this is an expensive computation; thus the p used
to create Rp is chosen randomly from the points still
not contained in a ribbon, which decreases the likelihood
that points near pre-existing ribbons will be selected.

3.2.2 Creating a ribbon

Each ribbon is generated by staring at p and travers-
ing the local ordering of points. The generation of U-
ribbons is described, but modifying this process to cre-
ate V-ribbons is straightforward and is discussed at the
end of this section.

Rp is initialized to contain only a single unprocessed
point p chosen randomly from P . Each point is marked
during this process to indicate whether it: resides at the
end or beginning of a ribbon, resides in a ribbon but not
at the end or beginning, is not yet part of a ribbon. This
allows for the loop conditions in line 3 and 8 of Alg. 4
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(a) (b) (c) (d) (e)

Fig. 5 a.)the point p is shown in red, its k-NN in blue and the lines lp1 and lp2 as orange and green respectively. b.) The
points closer to lp2 then lp1 fall in the shaded region and are excluded from consideration c.) The remaining points are
ordered along lp1 d.) Left(p) and Right(p) are determined e.) The process is then repeated for lp2 to establish Up(p) and
Down(p)

to be verified quickly, and makes the process of linking
ribbons more efficient.

The process proceeds by adding Left(p) to the front
of the ribbon, nextLR is then used to move along the
local orderings and stops when nextLR returns a point
that has already been processed. The process is then re-
peated in lines 7-10 starting with the point Right(p) with
points added to the end of the ribbon, in order to respect
the ribbons ordering(fig.6). When Alg. 4 terminates the
ribbon Rp is ready to be linked to existing ribbons.

1 Add p to Rp

2 p := Left(p)
3 While p is not part of a ribbon :
4 Place p at the front of Rp

5 p := NextLR(Rp,1, Rp,2)
6 End While
7 p := Right(Rp,end)
8 While p is not part of a ribbon:
9 Place p at the end of Rp

10 p := NextLR(Rp,end, Rp,end−1)
11 End While

Algorithm 4:

In order to generate V-curves it suffices to repeat
the same procedure, but replace Left(p), Right(p), and
NextLR with Up(p), Down(p), and NextUD respectively.

3.2.3 Linking ribbon

Once Rp is generated by Alg. 4 it is linked to the exist-
ing ribbons. This requires handling three cases: (i) Rp

neither starts nor ends at the end of another ribbon, (ii)
Rp starts or ends at the end of another ribbon (but not
both), (iii) Rp starts and ends at the end of another rib-
bon. If the first case occurs nothing is done. When the
second case occurs Rp is linked to the adjoining ribbon.
The final case requires linking Rp to the ribbon at the
start of Rp, and then linking the resulting ribbon to the
ribbon at the end of Rp.

All three cases can be identified by examining Left(Rp,0)
and Right(Rp,end) for U-ribbons and Up(Rp,0) and

Fig. 7 U ribbons (black) and V ribbons (red) rendered with
uniform width

Down(Rp,end) for V-ribbons. Linking of ribbons is a lo-
cal process, thus if multiple non-intersecting point clouds
are present no ribbon should link the two objects.

It is interesting to note that when two sets of ribbons
are produced following orthogonal vector fields their com-
bined connectivity yields mostly quads (fig.7). As the
principal directions of variation meet this criteria the
unions of U and V ribbons yields mostly quads.

3.3 Rendering Ribbons

Although a set of ribbons does not reconstruct the sur-
face they can be rendered in a manner that approxi-
mates visual continuity, this is similar to what is pro-
posed by Boubekeur et al[4]. Each ribbon is rendered
independently as three quad strips using OpenGL, the
necessity of three quad strips is discussed below.

WPCA provides an estimate of the surface normal,
but the normal may not be oriented correctly. Comput-
ing the correct orientation is a relatively complex and
time consuming operation[9,13], to avoid this two shaded
quads are rendered between consecutive points in each
ribbon. The first quad is translated positively along the
normal, and the second negatively along the normal. The
quads are given width by moving the corners orthogo-
nally with respect to the vector connecting the two points
and the normal at each end of the quad, as is illustrated
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(a) (b) (c) (d) (e)

Fig. 6 a.) Point cloud with one ribbon already present, and p highlighted b.) Right(p) is calculated and added to ribbon
c.) process continues until Right(p) = p d.) Process is repeated starting with Leftp e.) The new ribbon ends at the end of
an existing ribbon, the two ribbons are joined

Fig. 8 The three quads connecting two points: the top and
bottom quads are shaded, whereas the middle quad is not
shaded and coloured the same as the background

in fig.8. A third quad is rendered for the purpose of hid-
den surface removal. This quad is not displaced along
the normal and is wider then other quads. By colouring
the quad the same colour as the background, and turning
off lighting, it serves to occlude quads behind the current
quad. The quads width can be set to a constant value, or
vary between quads as described in §4.2 . Rendering each
ribbon as three quad strips allows for interactive rates to
be achieved, and the user can adjust the maximum quad
width Wmax in order to visualize the point cloud. Al-
though ribbons do not branch or form loops the visual
quality of results is increased when they are allowed to
do so. This is achieved by extending the beginning and
end of each ribbon along their local connectivity when
rendering and is shown in fig.4f.

It should be noted that one quad strip may be omit-
ted when oriented normals are provided, and the middle
quad when hidden line removal is not needed.

4 Applications

4.1 Reverse Subdivision and Subdivision

To perform reverse subdivision on the point cloud it suf-
fices to perform reverse subdivision along the set of rib-
bons RU or RV . This is roughly equivalent to performing
reverse subdivision along one direction of a tensor sur-
face.

Any set of ribbons can be handled similarly, so let us
consider an arbitrary set of ribbons R. To this end let
Rk+1 be the k + 1st set of coarse ribbons then

Rk+1 = {Rk+1,p1 , Rk+1,p2 , · · · , Rk+1,pr
}

Now let A,B, Q, P be the usual reverse subdivision filters
derived from the sub-division filter P . Then

Rk = {Rk,p1 , Rk,p2 , · · · , Rk,pr}
Dk, the kth set of details can be obtained similarly by
applying B to each ribbon in Rk+1. Thus multiple ap-
plications of reverse subdivision can be reconstructed,
provided that the set of ribbons is not recomputed.

From the kth set of coarse points we can return to
Rk+1 by applying P and Q to the ribbons of Rk and Dk

respectively as follows:

Rk+1 = {PRk,p1 + QDk,p1 , · · · , PRk,pr + QDk,pr}
Thus if we consider only one set of ribbons it is possible
to obtain a multiresolution system. Additionally, by uti-
lizing the connectivity of the coarse ribbons it is possible
to avoid recomputing the k-NN making this a very effi-
cient operation. Performing reverse subdivision without
re-parameterizing is visualized in fig.14 using one of the
NPR techniques presented in the following section. Un-
fortunately, repeated applications of reverse subdivision
may not produce a nice approximation of the original
point cloud as only one direction of curvature is taken
into account.

It is not possible, presently, to perform reverse sub-
division along the U-Ribbons followed by the V-ribbons
as it is not clear how the V-ribbons must be modified
to respect the reverse subdivision along the U-ribbons
in a way that allows for subdivision connectivity to be
maintained.

The process of parameterizing, and then reverse sub-
dividing the point cloud can then be repeated to decrease
the resolution further. Re-parameterizing the point cloud
after reverse subdivision involves discarding the details
needed to reconstruct the original point cloud, as such
this does not provide a multiresolution system for point
clouds.

The performance of reverse sub-division on ribbons
was tested using Chaikin subdivision for open curves and



8 Adam Runions et al.

the corresponding length 4 reverse sub-division filter de-
rived in [3].

The initial parameterization is fairly regular and con-
sists mostly of quads. After reverse subdivision is applied
the parameterization appears much less regular, but the
points it produces still provide a reasonable approxima-
tion to the initial point cloud.

4.2 Non-Photorealistic Rendering

Ribbons are constructed to maximize length and follow
the principal variation of the surface, properties which
are desirable when strokes are used to visualize a surface
as a line drawing. To demonstrate the effectiveness of rib-
bons for this purpose three NPR styles have been consid-
ered: silhouette rendering, hatching, and cross-hatching.

All three techniques are implemented by varying the
width of each ribbon segment based on the view angle.
Given a point p with normal n on the surface and the
eye position e the view angle is

cos(θ) =
p− e

|p− e| · n

The width of each shaded quad starting or ending at p
is calculated as

W = Wmax(1− cos(θ)− τ)

where τ is a user defined threshold. When W ≤ 0 all
quads containing p are ignored. This formulation is sim-
ilar to that employed for stable silhouettes by Brosz et
al[5] for use in polygon meshes and offers the same ad-
vantages in this setting. Continuous changes in the view
angles result in continuous variation in width, as such
stable and continuous strokes are produced.

Varying width based on view angle, and rendering
ribbons as described in §4.2 suffices to render the point
cloud in a hatched NPR style. The unshaded quad serves
to occlude strokes that should not be displayed.

Cross-hatching can be generated similarly by render-
ing two sets of chains following orthogonal vector fields
in a hatched NPR style. As orthogonal vector fields will
intersect at right angles at each point displaying the U-
ribbons and V-ribbons simultaneously allows for such an
effect. Examples of hatching and cross hatching using
these techniques are given in fig.9-12.

Silhouettes are produced by varying the width as de-
scribed above, but with each quad rotated to coincide
with the normal instead of the tangent plane at each
point. This increases the visibility of quads on the sil-
houette, which otherwise would be almost perpendicular
to the view plane. Silhouettes require higher values of τ
for proper visualization.

All the NPR techniques discussed operate directly on
the ribbon represented without relying on an underlying
mesh like representation. Furthermore, the point cloud
can be visualized at interactive rates, allowing for easy
user specification of τ .

(a) (b)

Fig. 9 Point cloud consisting of around 153k points, a.)
V ribbons rendered as hatching b.) U ribbons rendered
as hatching, model is provided courtesy of INIRIA by the
AIM@SHAPE Shape Repository

(a) (b)

Fig. 10 Point cloud consisting of around 100k points, a.) V
ribbons rendered as hatching b.) Rendered with cross hatch-
ing model is provided courtesy of Stanford Computer Graph-
ics Laboratory

(a) (b) (c)

Fig. 11 Point cloud consisting of around 53k points, a.) U
ribbons rendered as hatching b.) V ribbons rendered as hatch-
ing c.) Rendered with cross hatching model is provided cour-
tesy of INIRIA by the AIM@SHAPE Shape Repository
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(a) (b) (c) (d)

Fig. 13 Silhouette technique applied to a.)dragon b.)Olivier hand c-d) Chinese dragon

(a) (b) (c)

Fig. 12 Point cloud consisting of 180k points a.)U ribbons
rendered as hatching (b-c) Rendered with cross hatching
and silhouette, model is provided courtesy of INIRIA by the
AIM@SHAPE Shape Repository

(a) (b)

Fig. 14 (a) Initial point cloud consisting of approx. 180k
points (b) After one level of subdivision, approx. 96k points

5 Conclusion

Ribbons provide an intermediate representation for point
clouds, more local than surface reconstruction and less
local than point based splatting. The ribbon representa-
tion of a point cloud can be computed efficiently using
only simple data structures, and can be rendered directly
as quad strips without additional processing.

The technique presented allows for a number of NPR
visualizations, and the application of one dimensional
operations to the point cloud. The ribbons linear struc-
ture is well suited to stroke placement, and based on
this initial work it appears that further exploring the
application of this representation to NPR provides an
interesting direction for further research.

At present the visual continuity obtained using rib-
bons is insufficient for purposes beyond visualization. Im-

proving the visual continuity of ribbons is thus very de-
sirable and is one of the aims of future research.

Although ribbons are created along the principal di-
rections of variation it is possible to generate ribbons
along any vector field defined on the point cloud. This
should allow for the visualization of vector fields on the
surface of the point cloud.

And finally, by exploiting both the U and V ribbons
together it should be possible to allow for additional op-
erations taking into account both directions of curvature.
This would allow for a wider range of operations to be
performed
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