
Parameter Aligned Trimmed Surfaces
Shannon Halbert∗

University of Calgary
Faramarz Samavati†

University of Calgary
Adam Runions‡

Max Planck Institute for Plant
Breeding Research

University of Calgary

ABSTRACT

We present a new representation for trimmed parametric surfaces.
Given a set of trimming curves in the parametric domain of a surface,
our method locally reparametrizes the parameter space to permit
accurate representation of these features without partitioning the sur-
face into subsurfaces. Instead, the parameter space is segmented into
subspaces containing the trimming curves, the boundaries of which
are aligned to the local parameter axes. When multiple trimming
curves are present, intersecting subspaces are further segmented
using local Voronoı̈ curve diagrams which allows the subspace to be
distributed equally between the trimming curves. Transition patches
are then used to reparametrize the areas around the trimming curves
to accommodate the trimmed edges. This allows for high quality
interpolation of the trimmed edges while still allowing parametric
referencing and trimmed surface sampling.

Index Terms: I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object
representations;

1 INTRODUCTION

When choosing a representation for a surface, one has many options.
Commonly employed representations include polygonal meshes, as
well as subdivision, implicit, and parametric surfaces. The choice of
representation is often dictated by the advantages offered by each
particular representation. Parametric surfaces are often employed
because of their efficient surface point referencing and rendering
capabilities. NURBS surfaces in particular are the standard surface
representation for CAD/CAM modeling systems due to their geo-
metric properties and potential for flexible editing through control
point manipulation. However, introducing trimmed holes into a
parametric surface is much less straightforward than doing so for
other surface representations, as holes cannot be represented using
a single continuous parametric domain. Consequently, the most
common way to trim these surfaces (see [4]) is to convert them to
a surface representation that supports holes. Once the surface has
been converted, the advantages of initially choosing a parametric
representation are lost. The guaranteed smoothness, simple and
efficient surface point sampling, and simple editing granted by the
parametric representation are lost. These properties are the result of
having direct access to a parametric function defined over a simple
parametric domain (see [2]). In practice, some editing capabilities
can be recovered with the use of complex data structures (see [3]);
however, editing the trimmed surface typically either results in large
deviations from the original surface or necessitates returning to the
untrimmed surface which must then be re-trimmed and retessellated.
T-splines [16] are a promising alternative for commercial software,
but require a parametric surface to have a NURBS representation.

∗e-mail: shalbert@ucalgary.ca
†e-mail:samavati@ucalgary.ca
‡e-mail:runions@mpipz.mpg.de

This is not the case when modeling structures, such as trees, that can
be produced using parametric primitives such as cylinders.

An alternative approach is to split the surface into separate para-
metric surfaces (as is done in [7, 8]). This allows the newly trimmed
surface to remain parametric and be edited via manipulation of the
original surface. Although the individual surfaces are parametric
and can be defined in the original parametric domain, they each have
an independent local parametric subdomain as well. Finding a cor-
respondence between these local parametrizations and the original
global parametric domain, commonly represented by the parameters
u and v, is non-trivial. Additionally, dividing the original parametric
domain, a simple rectangular region, into a set of arbitrary surfaces
destroys one of the advantages of parametric surfaces: the simple
u,v traversal of the domain which aids the fast lookup of points and
rendering capabilities of these surfaces.

In this paper we introduce a new method for representing trimmed
parametric surfaces which allows us to preserve the parametric
properties of the original surface. The method consists of three
stages: isolation of trimming curves, Voronoı̈ diagram creation,
and reparametrization. The surface can then be rendered using a
two-stage rendering process.

For a given set of trimming curves (Figure 1a), the first stage of
trimming, shown in Figure 1b, localizes the influence of the trim-
ming curves on the parameter space by creating polygonal subspaces
referred to as axis-aligned trimming regions (AATRs) around groups
of trimming curves. The boundaries of these subspaces are aligned
with the parameter axes for easy identification. During the second
stage, shown in Figure 1c, local Voronoı̈ diagrams are calculated for
intersecting AATRs. Bisectors are found and their curves smoothed
and uniformly sampled to equally share the subspace between ad-
jacent curves. In the third stage, the untrimmed regions of the
AATRs are reparametrized using transition patches to interpolate
both the trimmed edge and the Voronoı̈ cell boundary. To do this,
we identify points of interest (points that must be interpolated when
rendering) along both the trimming curve and its boundary curve.
Corresponding points are found and connected on the boundary or
curve respectively to define the inner boundaries of the transition
patches. Finally, the patch spaces are reparametrized using Coons
patches.

The surface is rendered in two stages: during the first stage
the subspace outside of the AATRs is rendered, followed by the
transition patches. This allows sample points to be matched along
shared boundaries.

Since all subregions are created in the parametric domain, it is
easy to ensure no gaps are introduced between adjacent patches.
The trimmed surface can be edited via the original surface points in
an intuitive manner, as with any other parametric surface, without
requiring retessellation. This results in real-time editing capabilities
without requiring the implementation of more complex surfaces.

2 RELATED WORK

We provide a brief overview of existing trimming techniques for
parametric surfaces. Parametric trimming methods typically em-
ploy one of the two following strategies: direct triangulation, or
segmenting the trimmed surface into multiple patches or surfaces.



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Overview of trimming process. (a) Untrimmed parametric domain; (b) Axis-aligned trimming regions; (c) Local Voronoı̈ diagrams;
(d) Coons patch boundary identification; (e) Final tessellated parametric domain; (f) Untrimmed sphere; (g,h) Final model.

Rockwood et al. [13] first triangulated trimmed parametric sur-
faces by converting them into individual Bézier patches bounded by
the trimming curves. The valid region (i.e. the portions remaining
after trimming) of each patch is further subdivided into uv-monotone
regions which are triangulated independently. As points along re-
gion boundaries are not guaranteed to align, gaps can occur between
adjacent patches. These small gaps or cracks are a common problem
when trimming parametric surfaces. Sheng and Hirsh [17] instead
convert the surface into a mesh. A minimum 2D triangle edge length
is chosen such that the mapped 3D triangle does not deviate from
the surface by more than a user specified tolerance. The parameter
space of the surface is first split into polygonal subregions based
on the boundaries of the surface’s Bézier patches which also make
them axis-aligned. Delaunay triangulation [5] is then used to tri-
angulate the subregions with constraints to ensure vertex matching
across neighboring subregions. Utilizing the subregions localizes
extraordinary triangles. Piegl and Richard [11] expand this tech-
nique to NURBS, triangulating the entire space at once using digital
terrain modeling techniques [6]. The scanline algorithm they em-
ployed to tessellate the trimmed surface produces a more regular
mesh than [17]; however, both methods produce a mesh rather than
a parametric surface.

Kumar and Manocha [10] divide the parametric domain into uni-
form rectangular cells with an edge length determined similarly
to [17]. Trimming curves are approximated by piece-wise linear
segments. Each grid cell is subsequently labeled as being inside,
outside or intersecting with the valid part of the surface. Cells within
the valid part of the surface are then triangulated with special consid-
eration for intersecting cells. This method provides improvements
in speed and efficiency over previous methods. It also produces
crack-free surfaces. However, the resulting surface representation is
still a general mesh and there is a tendency towards irregular vertices

in triangles along the trimmed boundaries. Piegl and Tiller [12] use
a more complex labeling system than [10] but instead of a regular
grid, the parametric domain of the surface is subdivided based on
surface geometry, allowing them to guarantee a minimum overall
deviation between the mesh and surface. However, since every cell
must be checked for intersections with each trimming curve, both of
these methods tend to be inefficient.

Hamann and Tsai [7] decompose a trimmed NURBS surface into
a set of ruled surfaces in the parametric domain. A Voronoı̈ diagram
is used to segment the space evenly between the trimming curves.
A scanline algorithm is then used to create the boundaries of the
ruled surfaces used to interpolate the trimming curves. Although
the surface remains parametric, the ruled surfaces can be long and
irregular in shape creating ill-shaped surface meshes. Also, changes
to the surface are global, as one trimming curve affects the entire
surface.

Hui and Wu [8] take decomposition of the surface one step further
and decompose the trimmed surface into separate NURBS surfaces
based on Hamann and Tsai’s Voronoı̈ decomposition. They do this
by detecting features along the trimming curves. These points are
then used to segment the cells, creating the boundaries of the new
surfaces. However, the resulting surfaces are independent from one
another. As a result, extra work must be done to ensure continuity
when editing these surfaces. The subsurface boundaries also do
not respect the original parameter axes making determination of the
subregion which contains a given point in the original parametric
domain more computationally complex.

Other methods such as [4] and [15] build on these fundamen-
tal techniques through algorithmic improvements or by increasing
efficiency through the use of GPU programming.

Notably, T-splines [16] have been successfully used to produce
watertight trimmed models. By allowing each control point to have



(a) Trimming curves. (b) Curve spaces. (c) Axis-aligned trimming regions. (d) Transition patches.

Figure 2: Definition of the subspaces and piecewise definition of the parameter space. Given our parameter space A and trimming curves
C = {c0,c1,c2} in (a), we wish to remove the subspaces (b) enclosed within the trimming curves from A. As this cannot be done directly, we
instead define a region around each curve (c) we wish to reparametrize to accommodate its associated curve. In (d), Voronoı̈ diagrams are
used to segment overlapping subspaces and transition patches are created to reparametrize A to accommodate the curves. The final trimming
subspace is defined as AT = A\R∗∪P∗.

its own knot vectors and blending functions, they control the con-
nectivity of each point. Compared to NURBS, this relaxes the
requirement for a regular grid of control points, allowing for the
introduction of T-junctions along trimmed boundaries and elimi-
nating the dreaded cracks between intersecting surfaces. However,
this method only works with NURBS surfaces and must be used in
conjunction with a T-grid to store the extra information and allow for
the specialized structure of the final model. It forces the conversion
of a simple parametric surfaces into a more complex surface. In con-
trast, our parameter-aligned strategy works for general parametric
surfaces and relaxes the need for T-junctions.

In this paper, similar to the Hamann and Tsai and Hui and
Wu works, we employ general Voronoı̈ diagrams. This refers to
the generalization of Voronoı̈ diagrams to construct sites for point
sets, line segments, polygons, circles and general curves. Alt and
Schwarzkopf [1] first introduced the idea of Voronoı̈ diagrams for
general curved objects. In this paper, it is this definition we use
when referring to Voronoı̈ diagrams.

Hui and Wu’s method successfully preserves the parametric prop-
erties of the surface but at the cost of the global parametrization and
straightforward editing. Rather than segment the surface into inde-
pendent surfaces, we redefine the parameter space to accommodate
and accurately represent the trimmed edges. The result is a trimmed
surface that has the main properties of the original parametric surface
including editing capabilities.

3 TRIMMED PARAMETER SPACE REPRESENTATION AND
METHOD OVERVIEW

Given a parametric surface S which is the result of mapping the
parameter space A : [0,1]× [0,1]⊂R2 using the parametric function:

f (u,v) = (x(u,v) ,y(u,v) ,z(u,v)) , (1)

and a set of trimming curves C = {c0,c1, ...,c`−1} ∈ A (see Figure
2a), we produce a trimmed parameter space AT ⊂ A, shown in
Figure 2d, such that applying f to AT produces the desired trimmed
surface ST . We distinguish between the final surface S ⊂ R3 and
the parametric mapping function f : R2→ R3 which can be used to
produce S. This is because if f is applied to a different parameter
space, such as AT , a slightly different surface (ST ) will be generated.

In this paper, the trimming curves are B-spline curves, though
any curve in A may be used. The i-th curve is defined as:

ci(r) =
m−1

∑
j=0

N j,k(r)q
i
j, r ∈ [0,1] (2)

where qi
j = (u j,v j),0 ≤ j ≤ m−1, are the control points defining

the curve ci, and N j,k(r) are B-spline basis functions.
Let the subspace γi ∈ A, referred to as the curve space and shown

in Figure 2b, be the region enclosed by the trimming curve ci and
γ∗ = ∪`−1

i=0 γi be the union of all the curve spaces. Then AT = A\ γ∗

is the trimmed parametric domain which produces the surface ST

when mapped using f . However, excluding only γ∗ when rendering
the parametric surface is not easy as each γi can be any shape and
their boundaries need to be accurately interpolated. To simplify the
exclusion of the curve spaces, we define local subspaces around
each trimming curve. Beginning with an axis-aligned bounding
box, shown in Figure 2c and discussed in section 4, we use the
space between ci and the boundary of its AATR, referred to as
Ri, to create a continuous transition between these two curves. If
any AATRs intersect, the shared subspace is divided using local
Voronoı̈ diagrams (section 5), as with R1 and R2 in Figures 2c and
2d. As the boundary of Ri is rectangular and ci is an arbitrarily-
shaped closed curve, we produce multiple transition patches P j

i for
j = 0,1, ...,k−1 for each AATR (see Figure 2d and section 6). The
set of patches which define Ri−γi is defined as Pi =∪k−1

j=0P
j

i . Each
transition patch is then locally reparametrized so the trimmed edges
are interpolated. Letting P∗ = ∪`−1

i=0Pi, then AT = A \R∗ ∪P∗
will produce the desired trimmed surface ST while ensuring the
interpolation of the trimmed edges.

The surface is rendered in two stages. During the first stage,
the unaffected region of AT , A \R∗ is rendered, followed by the
transition patches P∗. This is discussed further in section 7.

4 DEFINING AATRS

To create the trimmed parameter space AT , we first isolate the sub-
space around each trimming curve to provide sufficient room to
create regular, high quality transition patches that interpolate the
new trimmed edges. Respecting the rectangular structure of A, we
isolate these areas using disjoint polygonal regions, referred to as
axis-aligned trimming regions. The AATR of curve ci is denoted Ri
while ∪`−1

i=0Ri =R∗ (see Figure 2c).
To calculate Ri, the minimum axis-aligned bounding box of ci is

calculated and expanded by a predetermined increment which must
be large enough to avoid narrow patches while still minimizing the



number of intersecting curve regions. This value can be modified
later due to boundary intersections or during rendering. The sub-

(a) (b)

Figure 3: A trimming curve on the boundary of the parametric
domain of a sphere is split into two curves with two independent
AATRs: (a) Tessellated parametric domain; (b) Trimmed surface
mesh.

spaces shared by overlapping AATRs are distributed using Voronoı̈
diagrams, which is outlined in the next section.

Special cases occur when a trimming curve ci(r) lies on a periodic
boundary of the parametric domain (Figure 3) or there is an open
curve which intersects with the boundary of the parameter space. In
the first case, the points of intersection between ci and the boundary
are found and the curve is split using two independent bounding
boxes and thus is contained in separate AATRs. The second case
is a degenerative case of the first with only one AATR required to
enclose the curve.

5 CREATING LOCALIZED VORONOÏ DIAGRAMS

An AATR may intersect with any number of neighbouring AATRs.
To evenly distribute the shared spaces, we use Voronoı̈ curve dia-
grams to segment the intersecting subspace, allowing the transition
patches to be built upon a single curve. As Voronoı̈ cell boundaries
equally bisect the space between neighbouring curves, this also fa-
cilitates the creation of patches of consistent size within a single
AATR.

As the cell boundaries are continuous curves consisting of all
points equidistant to neighbouring curves, we closely approximate
them by finding a series of bisection points, which are smoothed and
redistributed, to form the final cell boundaries. Our technique for
calculating the Voronoı̈ diagrams is based on that of Hamann and
Tsai [7]. First, they create a triangulation of the parametric domain.
Bisectors are then found on the triangle edges which results in a
piecewise linear approximation of the bisection curves (as seen in
Figure 4a). Details of this process can be found in [6].

We calculate the distance from a point p to curve ci using the
Haussdorff distance (see [9]):

d(p,ci) = min
r∈[0,1)

{‖p− ci(r)‖} . (3)

Also, only triangles lying inside an AATR or on its boundary are
considered, as bisection points outside of the region are irrelevant.

As the bisection points are a linear sampling of the boundary
curves lying on triangle edges, the resulting curve may be jagged
and have clustering of points near triangle vertices (see Figure 4a).
To smooth and evenly distribute the cell boundaries while still ad-
hering to the definition of a Voronoı̈ curve diagram, the points are
redistributed by minimizing the following energy function:

(a) (b)

Figure 4: (a) As bisection points are found on triangle boundaries,
the resulting curve can be jagged; (b) Cell boundary points are
smoothed using energy minimization.

E
(
B`,k

)
=

n−1

∑
j=0

∥∥∆b j
∥∥2 w f +∥∥D

(
b j,c`

)
−D(b j,ck)

∥∥2 wv (4)

where B`,k = {b0, b1, ...,bn−1} is the set of shared boundary points
between curves ck and c`, w f and wv are scalar weights indicating
the relative importance of fairing (term 1) versus approximating
the cell boundary (term 2) respectively, and ∆b j is the first finite
difference of b j.

A simple analytical form of the gradient of E in equation (4)
can be used to smooth the boundary points iteratively. Given a
boundary point b j,0 < j < n−1, let bi

j be the point after i iterations
of smoothing, and pi

k and pi
` be the closest points to bi

j on curves ck

and c` respectively with distances di
k and di

`. Then for i > 0,

bi
j = bi−1

j +w f ∆
2bi−1

j +wv(~v`+~vk)

where~v` = (di
`−di

k)(pi
`−bi−1

j ) and similarly for~vk. All examples
in this paper required only two iterations.

We now have at least two sets of points associated with each curve:
a collection of shared boundary points with each neighbouring curve
cell, shown as the blue points in Figure 4b, and possibly a set of
points from the outer boundary of the AATR, shown as the dark
lines in Figure 4b. To merge these into a single boundary curve,
they are sorted in consistent direction with the trimming curves
(we use counter-clockwise). Each cell now has associated with it
a trimming curve and a single boundary curve and can be locally
reparametrized using two-dimensional patches to define the trimmed
parameter space, AT . Overlapping AATRs are replaced with the
local Voronoı̈ cell as with R1 and R2 in Figure 2.

Figure 5: A discretized Coons patch with boundary curves labeled.



(a) (b) (c) (d)

Figure 6: (a) Corners require LoS with their corresponding curve points. (b) If this is not enforced, overlapping of patches will occur. (c)
Patches that are not adjacent to the cell curve are created to avoid the case in (b).

6 SEGMENTING THE CELLS

The final step in creating the trimmed parameter space is to redefine
the valid regions of the AATRs (Ri− γi for 0 ≤ i ≤ n− 1) using
patches in A. The subspace a transition patch defines is denoted
P j

i ⊂ Ri ⊂ A. We chose to use Coons patches because of their
regularity, parametric properties, and their ability to easily transition
from the trimmed edge to the surrounding parametrizations. A
Coons patch, shown in Figure 5, is defined by:

P(s, t) =(1− s)Q1 (t)+ sQ4 (t)+ (5)
(1− t)Q2 (s)+ tQ3 (s)−
[(1− s)(1− t)Q2(0)+ s(1− t)Q2 (1)+
t (1− s)Q3(0)+ stQ3(1)] ,
t ∈ [0,1], s ∈ [0,1],

where Qi, i = 1,2,3,4, are the curves defining the patch’s boundary.
Each cell must be split into four-sided regions, the boundaries of

which define the four curves required to create the Coons patches.
First, corners are detected along each cell boundary (shown in Fig-
ure 7a). As the boundary of the Voronoı̈ diagram is aligned with
the parameter axes, there are no other features along cell bound-
aries. Corresponding points are then located on the trimming curve
(shown in Figure 7b). These point pairs are connected, creating the
Coons patch’s boundary. Although a single patch could be used for
most AATRs, we segment Ri− γi using multiple patches to reduce
twisting during polygonization.

To detect corners, we march along the cell boundary, finding
interior angles < φ , where φ is a predefined threshold. The boundary
points between successive corners define the curve Q1(t).

To define the remaining three curves of the Coons patch, cor-
respondences are found between corner points and points on the
trimming curve. As demonstrated in Figure 7b, given a corner point
pk

i which is on the boundary of the cell surrounding the trimming
curve ci(r), we wish to find rk such that f (ci(rk)) is the closest point
on ci to f (pk

i ). Notice this step is performed in object space, not
parameter space. Establishing correspondences based on distances
in object space produces better results on surfaces with high curva-
ture. The portion of the trimming curve between successive matched
points defines the curve Q4(t).

To complete the Coons patch, it is left to define the curves Q2(s)
and Q3(s). We do this by simply connecting each corner point with
its corresponding curve point. The number of points generated along
Q2 and Q3 can be adjusted to make quads in the patch similar in size
to those of the parent surface. However, the number of points on
these curves must be consistent between all adjacent patches which
can cause much smaller quads in interior patches. Once all curves

are found, we then create each Coons patch as in equation (5). Each
patch P j

i represents a mapping from the locally defined subspace to
A.

6.1 Isolated Patches

As seen in Figure 6a, occasionally, a corner point pk
i does not have

line-of-sight (LoS) with its corresponding curve point ci(rk) (Figure
6a). As illustrated in Figure 6b, this can result in overlapping patches
when the above method is applied. We resolve this by creating
isolated patches (patches that are not adjacent to the ci). To create an
isolated patch, four non-collinear segments along the cell boundary
must be identified to represent the four Coons patch curves. Since pk

i
is a corner point, we know there is one segment to the left and one to
the right of the point (Figure 6c). It is left to identify a third segment
and enclose the area with a fourth, creating the shared boundary
with adjacent patch(es).

Testing for LoS is straightforward and can be determined by
testing for an intersection between the cell boundary curve and
the line segment pk

i ci (rk). Finding the third curve segment can be
done in a variety of ways including counting left and right hand
turns while checking for LoS. We chose to use a ”growing quad”
algorithm, as outlined in Figure 6c. Given the corner point pk

i , we
define the points pr and p` to be the cell boundary points to the right
and left of pk

i respectively. We also define the vectors v1 = pr− pk
i

and v2 = p`− pk
i . The fourth point of the quad, pq, is defined as

pq = p`+ v1. The algorithm is iterative and stops when the fourth
point pt is found. Either pr or p` will be an interior point of the

(a) (b)

Figure 7: Segmenting two adjacent cells: (a) Corners are detected
along the cell boundary; (b) Corresponding curve points are found
on the cell curve. These points are connected to form the 4-sided
regions required for Coons patch creation.



(a) (b) (c) (d)

Figure 8: Example of a NURBS surface trimmed and edited using our method.

(a) (b) (c) (d)

Figure 9: Results of trimming a surface using curves with concave regions. The AATRs have been color-coded for easy identification.

patch meaning that it, along with pt , requires LoS with the cell
curve. During iteration i of the algorithm, v′1,i = v1αi, where α is
a small increment greater than 1. During each iteration, we find
any cell boundary points enclosed by the quad and update p` and
pr as needed until pt is found. This defines three of the segments
required to create the Coons patch. The fourth segment is created by
connecting the two interior points of the quad.

Once we construct any isolated patches, we have a seamless
parameter space AT = A\R∗ ∪P∗ which can be used to produce
the trimmed surface ST . In the following section, we describe how
this surface can be tessellated.

7 RENDERING THE TRIMMED SURFACE

We have created a trimmed parameter space AT such that f (u,v) for
(u,v) ∈ AT produces the desired trimmed surface ST . Rendering
of the surface is performed in two passes to avoid gaps and ensure
the trimmed edges are accurately interpolated. During the first pass,
the unaffected parameter space A\R∗ is rendered as with any other
parametric surface. During the second pass, the transition patches
P j

i for i = 0, ..., `−1 are rendered to match the sampling of A\R∗,
resulting in a gap-free surface that preserves the properties of the
original parametric surface.

7.1 Avoiding Surface Gaps

As with any technique using adjacent surface patches, the discretiza-
tion of the surface can cause gaps in the trimmed surface model
if care is not taken. Gaps can be introduced into two areas of the
mesh: between a patch and the trimmed parent surface; and between
adjacent patches.

Gaps between a patch and the parent surface can be avoided
by either forcing the parent surface to interpolate the boundaries
of the AATRs or choosing the AATR boundaries wisely during
their creation. We choose increments by which a curve’s AABB
is enlarged in section 4 such that its boundary coincides with the
initial sampling of the surface. In addition to this, by using the same
sampling to create the patch mesh as the surface mesh, we ensure
that no gaps between a patch and the trimmed parent surface occur.

To avoid gaps between adjacent patches, it is necessary the same
surface points along shared Voronoı̈ cell boundaries are used. We
do this by using the evenly distributed boundary points to create
the shared Coons patch curve and then using the same increment to
create each patch.

8 RESULTS AND DISCUSSION

In this paper, a method for trimming parametric surfaces and repre-
senting the resulting surfaces has been presented. We demonstrated
the trimming method using a series of example shown in Figures
1, and Figures 8-10. Subspaces aligned to the parameter axes are



Figure 10: A trimmed hubcap model.

created around the trimming curves. Localized Voronoı̈ diagrams
are then used to segment any shared space between adjacent AATRs.
The Voronoı̈ cells are segmented by identifying sharp features along
each cell boundary and then filled with Coons patches. The surface
is rendered in two stages. First, the original surface is sampled
excluding the AATRs. Second, the Coons patches partitioning the
regions are sampled to match the sampling of the parent surface to
avoid the introduction of gaps between the surface and patches.

Our technique permits simple uniform surface evaluation after
trimming. The parametric properties of the surface are preserved
throughout the trimming process, including the ability to edit the
trimmed surface without the need to re-trim or retessellate the edited
surface as demonstrated in Figure 8. In the case of NURBS surfaces,
the original control points and their connection to the surface model
remain intact. There is no need to add points to the trimmed surface
to ensure the geometric continuity is preserved.

Curves of various shapes, including concave shapes, may be used.
As seen in Figure 9, our transition patch construction is suitable for
non-extreme concave shapes where each point Q4(t ′) on the Coons
patch boundary curve has LoS with the point Q1(t ′) on the opposite
boundary curve.

In the case of multiple trimming curves, as the curves become
closer to one another, the effects the weights become more apparent
when smoothing the Voronoı̈ cell boundaries. More emphasis on
approximating the cell boundary is important as too much weight
on fairing can cause the boundary curve to intersect one of the
trimming curves (see Figure 11a and 11b), causing anomalies in the
final trimmed surface model. The gap-prevention heuristic requires
that the number of quads per patch not be affected by the surface
area a patch encompasses. As shown in Figures 11c and 11d, this
means that as two curves approach one another, the number of quads
between them does not change drastically and the quad-size shrinks.
Since there are a sufficient number of quads inside this narrow space,
the surface is rendered properly (with two holes separated by a
narrow, crack-free, band) (see Figure 11e), even when the sampling
increment is larger than the space between the curves.

8.1 Surface Continuity

Manipulating the parameter space may affect the parametric conti-
nuity of the surface. Introducing trimmed regions into A introduces
discontinuity into S as u and v are undefined within the trimmed
regions. Also, reparametrization of transitional areas can effect the
continuity. Each transition patch has a different parametrization
from the original surface parametrization. This may change the
parametric continuity inside of the AATRs. This is mainly due to
the change of partial derivatives inside the AATRs. However, the
geometric continuity of the surface is not affected as we only change
the sampling of the surface points and not the surface itself. For
example, in Figure 1f, although the parametric continuity has been
changed (see Figure 1g), the geometric continuity has not (see Figure
1h).

9 CONCLUSION AND FUTURE WORK

Creating axis-aligned subregions allows for easy identification of the
subregion a point is in when evaluating the surface. Compared to Hui
and Wu, our method produces more regular meshes with generally
fewer patches; we take into account the sampling of the surface
as the patches are created, making finding subregions much more
straightforward; and because our subregions are in the parametric
domain, no continuity constraints need be implemented to ensure the
trimmed surface has the same geometric continuity as the original.
Additionally, our method works for all parametric surfaces including
general surfaces (such as generalized cylinders), B-Spline, NURBS
and PUPs [14] surfaces.

We would like to expand our AATR segmentation algorithm such
that it is capable of segmenting highly concave curves. In this case,
parts of a trimming curve may not have line-of-site with the boundary
of its associated transition patch. A more robust cell decomposition
which detects and isolates these regions would be required. The
method of cell segmentation used will not impact any of the other
steps in the trimming process as long as sample points along shared
transition patch boundaries are matched during rendering as this is
crucial to avoiding cracks in the final trimmed model.



(a) (b) (c) (d) (e)

Figure 11: As two curves approach one another, the number of quads between them does not change drastically and the size of the quads
between them shrink. When they become very close, boundary smoothing weights are adjusted. (a) Smoothed bisection points with fairing and
distance of equal weight; (b) Smoothed bisection points with fairing weight of 0.125 and distance 0.875; (c) Final polygonized model with
equal weights and curves farther apart; (d) Final polygonization of (b); (e) The final model with texture.

ACKNOWLEDGMENTS

This work has been partially supported by GRAND NCE and
NSERC.

REFERENCES

[1] H. Alt and O. Schwarzkopf. The voronoi diagram of curved objects.
In Proceedings of the Eleventh Annual Symposium on Computational
Geometry, SCG ’95, pp. 89–97. ACM, New York, NY, USA, 1995. doi:
10.1145/220279.220289

[2] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy. Polygon Mesh
Processing. AK Peters, 2010.

[3] G. K. L. Cheung, R. W. H. Lau, and F. W. B. Li. Incremental rendering
of deformable trimmed NURBS surfaces. Proceedings of the ACM
Symposium on Virtual Reality Software and Technology - VRST ’03,
p. 48, 2003. doi: 10.1145/1008653.1008664

[4] R. Cripps and S. Parwana. A robust efficient tracing scheme for tri-
angulating trimmed parametric surfaces. Computer-Aided Design,
43(1):12–20, Jan. 2011. doi: 10.1016/j.cad.2010.08.009

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computa-
tional Geometry: Algorithms and Applications 3ED. Springer Berlin
Heidelberg, 2008.

[6] T.-P. Fang and L. Piegl. Delaunay triangulation using a uniform grid.
Computer Graphics and Applications, IEEE, 13(3):36 –47, may 1993.
doi: 10.1109/38.210490

[7] B. Hamann and P.-Y. Tsai. A tessellation algorithm for the representa-
tion of trimmed surfaces with arbitrary trimming curves. Computer-
Aided Design, 28(6-7):461–472, July 1996. doi: 10.1016/0010-4485
(95)00043-7

[8] K. Hui and Y.-B. Wu. Feature-based decomposition of trimmed surface.
Computer-Aided Design, 37(8):859–867, July 2005. doi: 10.1016/j.
cad.2004.09.014

[9] R. Klein and W. Straber. Large mesh generation from boundary models
with parametric face representation. In Proceedings of the Third ACM
Symposium on Solid Modeling and Applications, SMA ’95, pp. 431–
440. ACM, New York, NY, USA, 1995. doi: 10.1145/218013.218097

[10] S. Kumar and D. Manocha. Efficient rendering of trimmed nurbs
surfaces. Computer-Aided Design, 27(7):509 – 521, 1995. doi: 10.
1016/0010-4485(94)00003-V

[11] L. A. Piegl and A. M. Richard. Tessellating trimmed nurbs surfaces.
Computer-Aided Design, 27(1):16 – 26, 1995. doi: 10.1016/0010-4485
(95)90749-6

[12] L. A. Piegl and W. Tiller. Geometry-based triangulation of trimmed
NURBS surfaces. Computer-Aided Design, 30(1):11–18, Jan. 1998.
doi: 10.1016/S0010-4485(97)00047-X

[13] A. Rockwood, K. Heaton, and T. Davis. Real-time rendering of
trimmed surfaces. SIGGRAPH Comput. Graph., 23(3):107–116, July
1989. doi: 10.1145/74334.74344

[14] A. Runions and F. F. Samavati. Partition of unity parametrics: a
framework for meta-modeling. The Visual Computer, 27:495–505,
2011. doi: 10.1007/s00371-011-0567-x

[15] A. Schollmeyer and B. Fröhlich. Direct trimming of NURBS surfaces
on the GPU. ACM Transactions on Graphics, 28(3):1, July 2009. doi:
10.1145/1531326.1531353

[16] T. W. Sederberg, G. T. Finnigan, X. Li, H. Lin, and H. Ipson. Watertight
trimmed NURBS. ACM Transactions on Graphics, 27(3):1, Aug. 2008.
doi: 10.1145/1360612.1360678

[17] X. Sheng and B. E. Hirsh. Triangulation of trimmed surfaces in para-
metric space. Computer-Aided Design, 24(8):437–444, 1992.


	Introduction
	Related Work
	Trimmed Parameter Space Representation and Method Overview
	Defining AATRs
	Creating Localized Voronoï Diagrams
	Segmenting the Cells
	Isolated Patches

	Rendering the Trimmed Surface
	Avoiding Surface Gaps

	Results and Discussion
	Surface Continuity

	Conclusion and Future Work

