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Abstract—Modern techniques in area preserving projections
used by cartographers and other geospatial researchers have
closed forms when projecting from the sphere to the plane,
as based on their initial derivations. Inversions, from the
planar map to the spherical approximation of the Earth which
are important for modern 3D analysis and visualizations, are
slower, requiring iterative root finding approaches, or not deter-
mined at all. We introduce optimization techniques for Snyder’s
inverse polyhedral projection by reducing iterations, and using
polynomial approximations for avoiding them entirely. Results
including speed up, iteration reduction, and error analysis are
provided.
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I. INTRODUCTION

Area preserving representations of the Earth’s surface
have long been important. Research ranging from biological
diversity studies, positional data regarding meteorological
phenomena and the geographic spread of medical illnesses
all rely on accurate area and regional information. Even
business applications such as efficient regional marketing
approaches and effective distribution techniques require such
representation. Consequently, when working with data based
on a spheroid shape, an approximation of our planet Earth,
areal preserving projections become increasingly important.

As such it is imperative to preserve area when translating
between a spherical representation of the Earth, to the planar
layout upon which we view maps and process data. Such
projections exist but often exhibit severe shape distortion.
Snyder’s [1] polyhedral projection aims at reducing angular
distortion, and has since been recommended for equal area
projections [2]. The more recent Slice and Dice projection,
presented by Leeuwen et al. [3], maintains areal preservation
yet distributes angular distortion more uniformly. Transform-
ing information from a planar representation to its spherical
locality, or their inversions, is traditionally unimportant. In
a Digital Earth framework, as proposed by former US Vice
President, Al Gore [4], [5], this inverse process becomes
extremely important since much underlying data is stored in
a planar form. Geographic information systems (GIS), for
example, employ such tactics to ensure enhanced accuracy
of the data presented, enabling researchers with qualitatively
improved methods for analysis.

Efficiency is also of the utmost importance. For example,
a client analyzing bodies of water may require a thousand
points to define the boundary of a lake from a coarse satellite
image. If there were hundreds of lakes, as can be found in
central Manitoba, this translates to over a million points that
must be projected through this inversion process. Rivers,
park boundaries and roads may also require simultaneous
projection to meet the needs of modern businesses, military
planners and scientific researchers. An effective approach
must be taken to meet their real-time needs as experienced
by geoscience visualization companies [6]. As such, a com-
putationally and memory efficient approach for an inverse
projection is desirable.

Figure 1. Projection from the Earth to Planar Map and Inverse (Right:
Blue Marble, NASA [7], Left: Mercator Projection, Google Maps [8])

Traditional cartographic projections transform a point on
the Earth to a point on a map. This projection can be
described through a function:

p′ = F (p),

where p is the point on the sphere, and p′ is the resulting
point on the map (Figure 1). Numerous projections have
defined the function F , though not all are area preserving.
These mathematical definitions are often constructed with
this forward projection in mind. The inverse, or F−1(p) in
Figure 1, defines the projection from the planar map to the
spherical Earth. They are often derived directly from the
forward projection.

Snyder’s equal area approach defines such a forward and
inverse projection. His method is unusual in that it projects
between a polyhedron, circumscribed within a sphere, and a



sphere, resulting in angular distortion greatly reduced from
traditional single-plane map projections. Area is maintained
by global and local preservation. Through a collection of
trigonometric equations, the function F (p) is described.
The inversion, F−1(p), occurs as a direct reversal of the
forward projection. From the trigonometric equations, a non-
linear system evolves. Since neither Snyder nor traditional
evaluations are able to construct an analytical or closed form,
numerical solution finding is employed.

Due to this need for numerical solution finding, we see a
drastic increase in calculation time. The closed form of the
forward projection avoids this since it only computes the
necessary calculations once. However, the iterative process
from the solution finding repeats calculations and therefore
increases the overall time. Since these iterations are applied
for each call of the inversion, which in turn is called
potentially millions of times for a single visualization, the
process can slow down well below real-time requirements.

There are few other approaches for preserving area, while
minimizing distortions. Leeuwen et al.’s Slice and Dice
projection would offer a valid alternative, however it does
not include an explicit definition of the inversion, let alone
a computationally efficient approach.

The aim of our research is to optimize the inversion
process employed by Snyder. In this way, it may be used in
environments requiring real-time on-the-fly feedback. A va-
riety of numerical and computational techniques are applied
to improve the speed of the inversion. Repeated calculations
are eliminated, efficient polynomial approximations are em-
ployed, and - most importantly - a reduction in the iterations
of Newton’s method is achieved. By evaluating data passed
through the iterative process, an approximating curve can be
extracted and used as an improved initial estimate, reducing
our F (p) to a one dimensional curve. This improved estimate
reduces the time it takes to converge. An additional approach
of applying the polynomial approximation directly, without
requiring iterations is also explored.

We start with a detailed discussion on Snyder’s equal area
polyhedral projection, and its inversion. This is followed by
the optimization techniques applied. These approaches are
documented and their results presented, including speed ups,
iteration reduction, and error analysis.

II. BACKGROUND

The Digital Earth framework, as proposed by former US
Vice President, Al Gore [4], aims to increase the accessi-
bility of data on the Earth’s surface within a 3D spherical
representation. This means that planar satellite images, field
surveys and other such 2D data must be transformed from
their planar locations to their respective spherical coordi-
nates. Traditional features such as geographic boundaries,
bodies of water, and transportation networks have been
documented by cartographers in planar map form to facilitate
discussion of such positional information. These projections,

from the Earth to the planar map, are wide and varied,
spanning thousands of years [9].

One of the challenges faced by such projections is the
inherent problem of transferring spherical data to a planar
form. It is impossible to define a projection that preserves
both the angles and area of features on the Earth. As such,
projections are defined and chosen to be used according to
the task required of them. Desirable characteristics include
the preservation of area, preservation of shape, distance and
positional accuracy, and an ease of computation [10]. With
the advent of computers, this last characteristic - ease of
computation - has become less critical to cartographers. Yet
within a Digital Earth framework, requiring real-time anal-
ysis, computational complexity remains of high importance.

(a) Mollweide (b) Werner

(c) Lambert Cylindrical Equal Area

Figure 2. Area Preserving Projections (Blue Marble Series, NASA [7])

For researchers wishing to analyze features on the Earth,
preservation of area is often required. Such projections have
been documented since Ptolemy’s Geographia manuscripts
in the second century [9], with some incorporating other
desirable projection characteristics. In some situations, at-
tempting to retain distances as much as possible is desired,
while in others, the overall shape (or angular) distortion
should be minimized. The Werner projection [9] of the 16th
century (Figure 2(b)), for example, generates a heart-shaped
map, with a collection of distances preserved. However,
shape distortion is extreme throughout the projection. The
Lambert Equal-Area projections - azimuthal and cylindrical
(Figure 2(c)) - are still commonly used today [11] [12].
They present the Earth’s data over a more regular space,
and while they reduce the distortion as seen in Werner’s,
the distance preservation is lost. The Mollweide projection
[9] of the early 19th century (Figure 2(a)) retained areal
equivalence while further improving the angular distortion



with its ellipsoidal shape. Despite these improvements, the
angular distortion is still high at the boundaries and non-
uniform across the planar mapping.

Figure 3. Icosahedral Mapping Using Snyder Equal Area Projection [1]

In projecting data for the Earth onto a sphere, Snyder [1]
chose to use a polyhedral surface. As a result, angular dis-
tortion was greatly reduced due to the close approximation
of the respective polyhedral shapes to that of a sphere. For
example, with an icosahedron - illustrated in flattened form
in Figure 3 - Snyder achieved an angular deformation of less
than 17.3o and a scale variation of less than 16.3%. Further,
this representation of a spherical world enables data on the
polyhedron to be more easily managed in its flattened form
before being visualized on the sphere.

Leeuwen et al. [3] later demonstrated an alternative
areal preservation which distributes the angular deformation
more uniformly across the surface of the projection. Their
Slice and Dice approach explored areal calculations from
a derivative approach. They start comparably to Snyder’s
projection, employing an initial polyhedral tessellation of
the sphere, and reducing the problem to the smallest distinct
region. From here, they divide the spherical triangle into four
partitions, maintaining areal ratios en route. An intersection
of these slices defines the position of the projected point.
As a consequence, the distortions become less noticeable,
eliminating discontinuities and reducing cusps. While their
forward projection is defined - albeit fairly involved, requir-
ing a dozen trigonometric calls - the inverse is not.

It should be noted that Song et al. [13] presented an
equal area small circle subdivision. This subdivision divides
triangles directly on the sphere into subtriangles using small
circle arcs. For a single triangle, dozens of trigonometric
calls ensure that all subtriangles are identical in area. While
these faces could be indexed to their respective planar
triangle, finding the projected location of a point would
require repeated subdivision until the vertex of a subtriangle
is sufficiently close to the point of interest. This approach
is quite costly, especially when requiring numerous subdivi-
sions to obtain high precision. As the objective of this paper
is to compute an inverse projection quickly, Song’s approach
does not lend itself to a viable implementation.

III. EQUAL AREA POLYHEDRAL PROJECTIONS

A more detailed discussion of the Snyder polyhedral pro-
jection is explored. Its inversion is then presented, including
notes pertaining to deficiencies in effective computation.

A. Snyder Projection

Snyder’s projection defines a function F which takes a
point, p on the sphere, and determines its coordinates on
a polyhedron. The main idea employs a modified Lambert
Azimuthal Equal-Area projection, centering it respectively
for each face. The modification corrects the otherwise impre-
cise edge matching between faces. Several steps define this
projection. Firstly, the symmetric property of the polyhedral
faces is recognized, and the problem is reduced to its small-
est distinct region - always a right triangle (Figure 4). The
second step ensures its area on the plane and on the sphere
are equivalent through a scaling factor between the two radii.
The third step generates a triangle on the polyhedron whose
area exactly matches that of a spherical triangle bounded by
point p. With this accomplished, the final step positions p′

along this triangle’s edge while maintaining areal scale.

Figure 4. Spherical and Planar Icosahedron with Symmetric Decomposi-
tion (Red line indicates the radius)

Figure 5. Snyder’s Projection

Figures 4 and 5 illustrate the triangles and their variables.
The initial extraction of the smallest distinct region is visual-
ized in Figure 4, where the face is divided equally into three
subtriangles, then further halved into a right triangle. This
splitting may be applied to any regular polygon, which in



turn makes up the faces of the truncated icosahedron and the
platonic solids - common sphere-circumscribing polyhedra.

Figure 5 illustrates several of the key angles and ver-
tices used during the projection. The triangles 4ABC and
4A′B′C ′ represent the spherical and planar triangles of
interest. These are associated with the underlying polyhedral
face with A and A′ the vertices, B and B′ the centroids,
and C and C ′ the midpoints along the edge. Our point
of interest P is projected to P ′ using the projection. In
the net-area preserving step, the radius R of the spherical
polyhedron is associated with the radius R′ of the sphere
circumscribing the polyhedron. D is defined using a great
circle arc from A through P , intersecting BC. The resulting
triangle, 4ABD, with angles 6 G, 6 H and 6 Az, is used to
determine 4A′B′D′ with the same area. 4A′B′D′ need
only be determined using the angle or azimuth 6 Az′, which
may in turn determine the position of point D′. In the final
step, the ratios between arc length q = AD and edge length
d′ = A′D′ are used to position P ′ appropriately. It should
be noted that due to the definition of the triangles, angles
6 Θ and 6 G are fixed and known for the given polyhedron.
These fixed values are found in Snyder’s discussion [1].

With these terms defined, a discussion of Snyder’s pro-
jection is readily facilitated. Recall the first step determines
the approximate scaling factor between the radius R, of
the sphere and the radius, R′ of the sphere of which the
polyhedron is circumscribed. This is uniquely determined for
each platonic solid (and truncated icosahedron), and is based
on areal calculations for the respective faces. For example,
for the spherical triangle face, we observe that its area is:

AGT =
(G−Θ)πR2

180o
, (1)

as defined through the spherical excess. The area of the pla-
nar triangle is computed using the traditional form, adjusting
the width and height with respect to its circumscribing
sphere. In this case, side A′B′ = R′ tan g and thus:

AMT =
1

2
(R′ tan g)2 sin Θ cos Θ. (2)

Equating 1 and 2, and applying the numbers for the icosa-
hedron, we achieve the scaling ratio of:

R′ = 0.9104R,

which will ensure overall areal preservation.
The next step is to preserve localized areal equivalence.

Recall that point D is formed by the intersection of great
circle arcs AP and BC. Rather than computing D geomet-
rically, one can use 6 H , calculated through the spherical
Law of Sines and Cosines:

6 H = arccos(sinAz sinG cos g − cosAz cosG). (3)

This in turn defines the area of 4ABD as:

AABD =
(Az +G+H − 180o)πR2

180o
, (4)

again through its spherical excess. To associate the area
of 4A′B′D′ with its circumscribing radius, and angles of
interest, Snyder defines the area as:

AA′B′D′ =
(R′ tan g)2 tanAz′

2(tanAz′ cot Θ + 1)
. (5)

Since we need AABD = AA′B′D′ , we can transform
equations 4 and 5 to define our planar azimuth, Az′:

Az′ = arctan(2AABDR
′2 tan2 g − 2AABD cot Θ).

The final step is to position point P ′ along this calculated
azimuth, Az′ so that it preserves overall areal scale. Snyder
modifies the proportionality factor from the Lambert Az-
imuthal Equal-Area projection so that it complies with the
polyhedral face. This proportionality factor becomes:

f =
d′

2R′ sin(q/2)
, (6)

for arc length q and edge length d′. For any point at position
z along the same azimuth Az′, one obtains the ratio:

ρ = 2R′f sin(z/2), (7)

which in turn is used to compute x, y on the planar face:

x = ρ sinAz′,

y = ρ cosAz′.

It should be noted that calculations presented by Snyder
are reliant on the specific polyhedral layout and the x, y
position and, latitude and longitude offsets for each polygon.
These are visualized and listed within his paper. Employing
these constants becomes a task in look up tables rather than
generalizing for geometric shapes and points.

Though many trigonometric calls are required, this defines
an effective closed form of the forward projection.

B. Inverse Snyder Projection

The inversion process finds the spherical coordinates of
P given the polyhedral coordinates of P ′. From the forward
projection, we see that symmetric extraction and net areal
scaling require nominal modification. In matching the areas
of 4ABD and 4A′B′D′, we have Az′ and must compute
Az. Thus, we can define the area of 4A′B′D′ as:

AA′B′D′ =
R′2 tan2 g

2(cotAz′ + cot Θ)
.



Setting this equal to the area of 4ABD, from equation
4, we observe that Az is involved linearly and trigonomet-
rically, through 6 H’s reliance on the arccos of sinAz and
cosAz by equation 3. Solving for Az results in a non-linear
equation. Since a closed form is neither proposed nor easily
determined, Snyder suggests the Newton-Raphson iterative
approach [1] to deduce an adequate value. This approach
computes the derivative and uses it to iteratively find an
improved approximate solution. We use the equations:

g(Az) =
180oAA′B′D′

πR2
−G−H −Az + 180o (8)

g′(Az) =
cosAz sinG cos g + sinAz cosG

sinH
− 1 (9)

∆Az = − g(Az)

g′(Az)
.

On each iteration, ∆Az is added to Az until ∆Az goes
below some pre-determined threshold.

The final positioning of P along great circle arc AD is
straightforward using the proportionality from equation 7.

Due to the non-linear equation, this inverse projection
requires a number of iterations to converge on a value within
a required accuracy. It should be noted that some of the
computations within the iteration process are often repeated
and therefore redundant within a formal implementation.
These repetitions must be identified and removed.

IV. OPTIMIZATIONS

Since this inversion process has no known closed form,
and requires iterative root-finding, numerous optimizations
have been applied to speed up the calculations within
iterations. In a graphical application where inversion calls
occur millions of times within a single screen of information,
slow implementations impede real-time requirements. While
an order of magnitude in reduction is preferred, with such
time costs even a constant reduction is beneficial.

Optimization of this inversion process has been applied to
an icosahedron due to its numerous uniform triangular faces
- a useful characteristic in computer graphics. Furthermore,
the high face count reduces angular distortion from the pro-
jection. The optimizations described could also be applied to
other sphere-circumscribing polyhedra, such as the platonic
solids or truncated icosahedron.

Three types of optimizations are performed. Operation
reduction, curve fitting and iteration removal are employed
to speed up the inversion. While the most insightful opti-
mization involves curve fitting for improved initial estimates,
we start with operation reduction due to its simplicity.

A. Operation Reductions

A preliminary approach is recognizing repeated calcula-
tions - particularly within the iterative process - and pre-
computing them. For example, cosAz and sinAz are used
in the calculation of H , and again in calculating g′(Az). In

turn, H is used in both g(Az) and g′(Az). These should only
be computed once within the iteration. This is particularly
meaningful given the additional time it takes to perform sine
and cosine operations.

Storage of fixed values that are repeatedly employed will
reduce the overall time. For example:

180oAA′B′D′

πR2
−G+ 180o (10)

is fixed, yet used in the repeated calls to g(Az). Instead it
can be calculated once and used when necessary. Similarly
sinG cos g and cosG, from g′(Az), can be pre-computed.
Other such repetitions, including the conversion between
radians and degrees, can be simplified.

An additional speed up involves recognizing sine and
cosine calls for the same angle, as occurs in equations 8, 9.
For example, both 6 G and 6 Az require these calculations.
Some compilers have a sincos, sincosf or FSINCOS directive
to calculate these simultaneously in the time it takes to
compute sine. Alternatively, an implementation such as
Wanhammar et al.’s [14], could be employed.

B. Curve Fitting Numerical System

Ideally, we would like to avoid iterative solution finding.
While a closed form would be preferable, one is neither pro-
posed by Snyder nor readily deduced by standard solution-
finding methods. An alternative is to analyze the iterative
process. Notice how the result relies entirely on the input
azimuth. For the angular range of the respective triangle
(60o for an equilateral icosahedron face), we can plot the
initial azimuth against the resulting azimuth, determined by
the iterative root-finding process (Figure 6).

Figure 6. Azimuth Before Against Azimuth After Iterative Newton
Raphson - Cubic Polynomial Approximation (Gnuplot 4.2)

Since the result is a smooth curve, it evokes the potential
for a polynomial curve fitting approach. A cubic polynomial
is fitted and visualized against the data to illustrate such a



tactic.1 To emphasize its non-linear form, the exponential
of its difference is plotted: y = e5(f(x)−x). The residuals
of the data from this curve - scaled for visibility - are also
shown. Curve fitting with higher order polynomials has been
performed with residuals presented in Table I.

These polynomials can be used to provide an improved
initial estimate for the iterative system. It is expected that
convergence will occur faster as a result. Horner’s Rule [15]
will further ensure a minimization of operations.

Table I
POLYNOMIAL APPROXIMATING AZIMUTHAL SHIFT

Polynomial Sum of Squares Variance
of Residuals of Residuals

Degree 1 1.19e+00 2.02e-04
Degree 2 9.27e-01 1.66e-04
Degree 3 2.30e-04 3.92e-08
Degree 4 2.06e-04 3.51e-08
Degree 5 2.51e-05 4.28e-09
Degree 6 2.20e-05 3.75e-09
Degree 7 9.06e-07 1.55e-10

C. Iteration Removal

Rather than improving the initial estimate, the polynomial
could be evaluated for the definitive azimuthal value. In this
way, we would use the result of the polynomial and skip
the iterative calculations entirely. As such, the computations
will change from:
Az ← poly(Az) // initial approximation
δ ← 1
while δ > 0 do
δ ← F (Az)/F ′(Az)

end while
to simply:
Az ← poly(Az)

Observe that a point projected with the iterative approach,
and a point projected with this eliminated iteration will not
coincide. If the offset is within a desirable precision, this er-
ror may be classified as negligible. Analysis of the positional
and areal change will be necessary during validation.

V. RESULTS

Implementation and testing occurred using Qt/C++ on an
Intel i7 quad core processor under Ubuntu 10.05.

The original implementation was contrasted against ap-
proaches described using the fitted cubic polynomial. While
basic operation reduction is useful, comparison is not per-
formed due to the inherent understanding that it will indeed
speed up the calculations. Of more importance is the speed
up of either a) reducing the iteration count through an
improved initial estimate, or b) eliminating the iterative
process by wholly using the polynomial approximation. For

1At the expense of additional operations, Chebyshev polynomials [15]
can be used. These will maintain stability in higher order polynomials.

the latter approach, an error analysis for areal change and
displacement is also provided.

(a) Flat Face (b) Projected Face

Figure 7. Quality 10 of Triangulated Face

For each of the three approaches - the original, improved
polynomial approximation, and iteration elimination - profil-
ing, using gprof (v2.17), was performed 100 times for four
resolution, or quality levels. A resolution refers to the num-
ber of times an icosahedron face is initially divided prior to
vertex projection. For example, a 10x10 resolution generates
100 triangles (Figure 7) whereas a 100x100 resolution will
split the face into 10,000. Resolution levels 25, 50, 75 and
100 were profiled, with each region representing 4, 080km2,
1020km2, 453km2 and 255km2 respectively on the Earth.

Table II
PROFILING RESULTS

Method. Avg Avg Std Dev. Time Iter
Quality Iter. Time (s) Improv. Improv.

O.25 3.61 0.0082 0.0083
B.25 2.76 0.0059 0.0081 28.05% 23.66%
E.25 0 0.0035 0.0058 57.32%
O.50 3.70 0.0229 0.0149
B.50 2.82 0.0205 0.0131 10.48% 23.83%
E.50 0 0.0138 0.0113 39.74%
O.75 3.74 0.0546 0.0222
B.75 2.81 0.0509 0.0217 6.78% 24.72%
E.75 0 0.0310 0.0167 43.22%

O.100 3.75 0.0996 0.0329
B.100 2.83 0.0832 0.0292 16.47% 24.50%
E.100 0 0.0524 0.0209 47.39%

Numerical results are presented in Table II. Column
”Method.Quality” indicates the method - original (O), better
approximation (B), eliminated iterations (E) - and quality
level. The average iteration reflects the change in iteration
distribution (Figure 8) as the quality improves, due to
the increase of interior calls. Notice especially with lower
qualities, that the standard deviation has the same order of
magnitude as the average method time. For higher qualities,
the results become more statistically significant. The percent
time improvement compares the improved and eliminated
approaches against the original. Iteration improvement over
the original is presented for the improved but not the
eliminated approach as no iterations occur.



Error analysis for the elimination approach can be found
in Table III. Here, distance is an absolute value (Figure 9(b)).
Given a point projected using the original inverse Snyder
and the same point projected using the eliminated approach
the distance error reflects the absolute displacement between
the two points. For example, the average distance error
of 9.379E-05% is the equivalent of 5.903 m, based on
an average Earth radius of 6,369 km. The areal error is
calculated using a quality-based triangle (Figure 9(a)). The
error computes the triangle’s change in area from its original
to its eliminated projection. As the quality increases - and
the size of the quality-based triangles decrease - the error
also decreases. For example, at quality 100, the average error
of 1.758E-06% equates to 713.5 m2 on the Earth.

Table III
ERROR ANALYSIS OF ELIMINATION APPROACH

Quality Avg Dist. Max Dist. Avg Area Max Area
Error Error Error (%) Error (%)

25 9.379e-05 6.193e-04 1.982e-05 1.596e-02
50 9.439e-05 6.193e-04 9.223e-06 2.195e-02
75 9.459e-05 6.193e-04 3.330e-06 3.504e-02
100 9.490e-05 6.193e-04 1.758e-06 5.073e-02

Figure 8. Iteration Distribution. (l-r) Quality 10, 30, 60, 100. Blue = 4,
Green = 3, Red = 2, Black < 2

(a) Areal Change. Cyan - growth,
Magenta - reduction

(b) Distance Change. RGB associ-
ated with XYZ displacement

Figure 9. Visualization of Skip Distortions

VI. DISCUSSION

Based on the error comparison between the original pro-
jection and the eliminated approach, as illustrated in Table
III, distance and areal errors are marginal. For example,
with a resolution level of 100, the displacement equates to
a mere 5.9 m, and an areal change of 0.7 km2. If these
distances are indistinguishable from the visualization scale,
it may be preferable to use this faster projection. If precision
is of the utmost importance, with an error less than this
eliminated approach, then the iteration reduction technique
offers a viable alternative, reducing computation time by
approximately 15%.

While a cubic polynomial was explored, a higher degree
polynomial may be alternatively employed improving the
approximation. This improved initial estimate reduces the
number of iterations required to converge. A separate trial
using a seventh degree polynomial resulted in 45% fewer
iterations, as compared with the cubic. When this higher
degree approximating polynomial was applied directly, vis-
a-vis the eliminated approach, the areal and distance errors
were reduced by a factor of 10. This equates to a distance
error of 0.59 m on the Earth’s surface, as compared with
the cubic polynomial’s 5.9 m. Notice that the seventh degree
polynomial requires 14 operations to compute, whereas the
cubic polynomial requires only 6 - both significantly less
than the calculations in a single iteration. Consequently,
when speed is of the essence, employing the eliminated
approach with a cubic polynomial will prove fastest and
fairly efficient. If speed and accuracy are important, a higher
degree polynomial to better approximate the azimuth may
prove more effective. The level of precision, amount of
acceptable error and need for faster calculations must be
considered when selecting the appropriate approach and
polynomial.

VII. CONCLUSION

For large visualization systems that require real-time
accurate and equal area information, an effective projection
mechanism is critical. With modern data acquired through
planar forms, preserving area during spherical conversion
is of the utmost importance. This area preserving quality
assists researchers and businesses with accurate analysis
of the respective data (Figure 10 illustrates our improved
implementation of the inverse Snyder projection, where,
for example, Greenland has the same area on the icosahe-
dron as on the sphere). Yet this analysis, along with the
visualization, relies on underlying feature outlines which
may span thousands or even millions of points for a single
region. Converting these feature points into their spherical
coordinates becomes an exercise in accuracy and speed.
Frequent use of the inverse Snyder projection, as occurs in
industry, can be very time consuming to the point of limiting
the system. Any form of speed up assists in achieving the
real-time qualities expected by modern clients.



The largest limiting factor in the inverse Snyder projection
is the non-linear calculations of the azimuth, requiring
iterative root-finding. A polynomial function may improve
this by providing a more accurate initial estimate. For a cubic
polynomial, this reduces the iterations by 25%. A seventh
degree polynomial further improves this by 45%. For the
cubic polynomial, this results in a 15% reduction in time
spent performing the inversion, which in turn enables 15%
more projections within a restricted real-time environment.
Though iterations are reduced, this improved estimate still
converges to an accurate azimuth, as per Snyder’s approach.

An additional speed up may be achieved by using the
polynomial to directly represent the azimuth. For the cubic
polynomial, this results in a 47% reduction in time. In
exchange for this large decrease, inherent errors occur. A
higher degree will reduce the error at the expense of its
own increased calculations. For the cubic polynomial, a
displacement of 5.9 m results, whereas a seventh degree
polynomial will decrease this by a factor of 10. While this
error may be undesirable, for primitive visualizations or
calculations, this faster approach may be beneficial.

While we tend to consider the Earth as a perfect sphere,
gravitational forces make it thicker around the equator, and
geological features leave it uneven. Incorporating these into
our otherwise sufficient model demonstrates the fallibility
of the area preserving approach taken. Given these non-
spherical qualities, it would be of value to consider a multi-
resolution areal preservation that takes into consideration the
precise and imperfect shape of our home planet.
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