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Abstract. Recently, Runions and Samavati [7] proposed Partion of Unity
Parametrics (PUPs), a generalization of NURBS which replaces B-spline
basis functions with arbitrary Weight-Functions (WFs) while preserving
affine invariance. A key problem identified by Runions and Samavati was
the identification of classes of weight-functions which are well-suited to
geometric modeling. In this paper, we propose a class of WF based on
bump-functions, which arise in the study of smooth, non-analytic man-
ifolds. These give rise to a class of C∞ curves with compact-support,
which we call CINPACT splines. The WFs are similar in form to B-spline
basis functions, and are parameterized by a degree-like shape parameter.
We examine the approximating and interpolating curves created using
the proposed class of WF. Furthermore, we propose and demonstrate a
method to specify the tangents and higher order derivatives of the curve
at control points for CINPACT and PUPs curves.

Keywords: Parametric curves, Interpolating curves, Approximating curves,
PUPs, B-spline, NURBS, Bump functions

1 Introduction

Parametric curves are fundamental to geometric modeling, and an important
primitive for Computer-Aided-Design (CAD). In CAD applications, parametric
curves are typically generated from a set of control points using splines. In this
setting, an important distinction arises between interpolating and approximating
curves, with the former passing through control points and the latter only passing
nearby the control points.

Recently, Runions and Samavati [7] proposed Partition of Unity Parametrics
(PUPs), a generalization of NURBS which replaces basis functions with arbi-
trary Weight-Functions (WFs) while preserving affine invariance. In the PUPs
framework, each control point is associated with a WF, and a parametric curve is
produced by summing the weighted control points. The resulting class of curves
is a super set of those generated by other NURBS generalizations, such as T-
Splines [8] and G-NURBS [9]. A question raised in the work was the identifica-
tion of WFs that would take advantage of the generality offered by PUPs. This
question motivates the work in this paper, where we use the work of Runions
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and Samavati [7] and Zhang and Ma [10] to identify a class of C∞ curves with
compact support.

In [7], a method for interpolating control points was proposed. In this method,
interpolation was achieved through the appropriate choice of weight function. In
particular, it employed a normalized sinc function, to interpolate control points,
multiplied by a compactly supported kernel, which localized the contribution of
each control point to the curve. A related interpolation method was proposed by
Zhang and Ma [10], which employed a different choice of compactly supported
kernel.

For their kernel, Zhang and Ma used a Gaussian, which generated C∞ curves
but required a tradeoff between compact support and affine invariance. In con-
trast, Runions and Samavati employed Partition of Unity Parametrics (PUPs),
which guarantee affine invariance, but their construction relied on B-spline basis
functions. Consequently, their method offers compact support and affine invari-
ance, but only Ck continuity (for a specified integer k).

Drawing inspiration from these works, we propose an interpolation scheme
which exhibits the beneficial properties of both. It generates high-quality in-
terpolating curves which guarantee affine invariance, compact support and C∞

continuity. The interpolation scheme generates a class of PUPs curves, and the
weight-functions used are based on the bump-functions employed in the analy-
sis of smooth, non-analytic manifolds [5]. The proposed weight-functions have a
simple exponential form, which is used to localize the effects of the sinc function.
A common requirement for interpolating curves is the interpolation of tangents
as well as control points. To address this requirement, we outline a method for
interpolating a specified set of tangents and higher order derivatives at control
points. This problem, in particular, was not addressed by the curve schemes of
Runions and Samavati [7], or Zhang and Ma [10], and the method we propose is
general in the sense that it is applicable to any PUPs curve.

A limitation of the approach of Zhang and Ma [10] is that the scheme they
propose does not readily give rise to a class of approximating curves with sim-
ilar properties. Consequently, it is difficult to use their method as the basis
for a comprehensive curve modeling system which must support both approxi-
mating and interpolating curves. In contrast, the method we propose is derived
from PUPs, permitting approximating curves to be generated in a straightfor-
ward manner. Specifically, by directly using the proposed bump-function as a
weight-function approximating curves are obtained. These curves are similar in
character to B-spline curves but provide C∞ continuity. The form of the weight-
function can be controlled by a shape parameter k. For appropriate choices of
k the weight-functions provide a good approximation of uniform B-spline basis
functions. Consequently, k is a continuous parameter that mimics the effect of
degree in B-spline basis functions, but permits the generation of intermediate
forms.

The immediate result of this paper is a simple curve scheme that can gener-
ate interpolating and approximating curves with tangent constraints, while sup-
porting the basic properties required for efficient CAD applications. As the curve
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scheme produces C∞ curves with compact support, we call them CINPACT -
splines.

The remainder of the paper is organized as follows. In Section 2, the methods
proposed by Runions and Samavati [7] and Zhang and Ma [10] are presented
and compared. In Section 3, a bump-function based WF is proposed and its
application to the generation of interpolating curves is considered. Following
this, Section 4 outlines the method for interpolating tangents and higher-order
derivatives. Approximating CINPACT curves are discussed in Section 5, along
with their relation to B-splines. Finally, the paper concludes with a summary of
the presented results in Section 6.

2 Previous work

A B C

D E F

Fig. 1. The PUPs based interpolation scheme proposed by Runions and Samavati [7].
For weight-functions, the method uses a normalized sinc function (A) multiplied by
a B-spline basis function (B). Thus, WFs have the form shown in (C). The contour
provided in (D) is approximated using the weight-function from panel (C) in (E) and
the normalized sinc function in (F).

2.1 Partition of Unity Parametrics

As proposed by Runions and Samavati [7], a Partition of Unity Parametric
(PUP) curve Q(u) takes the form:

Q(u) =

n∑
i=0

Ri(u)Ci , (1)

where Ci are control points and each Ri(u) takes the form

Ri(u) =
Wi(u)∑n
j=0Wj(u)

, (2)
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where Wi(u) is a Weight-Function (WF) that controls the contribution of Ci to
the curve. Dividing by the sum of the WFs normalizes the values of the functions
Ri, guaranteeing that they sum to 1. Thus, the Ri are called normalized weight
functions. As the Ri provide a partition of unity, the resulting curve must be
affine invariant. The final component of the definition of PUPs is the following
condition:

n∑
j=0

Wj(u) 6= 0 , (3)

which guards against indeterminate forms.
To interpolate, for each Pi an interpolation site i is chosen in the parameter

domain. Then, Q(i) = Pi is guaranteed through the appropriate choice of Wi. For
this purpose, Runions and Samavati [7] proposed the following weight function:

Wi(u) = Ii(u)Ai(u), (4)

where Ii(u) can be any continuous function where Ii(j) = δij , and Ai(u) is a
tempering function which must be non-zero at i (i.e. A(i) 6= 0). There are many
possible choices for Ii, however they chose

Ii(u) =
sin(π(u− i))
π(u− i)

, (5)

the normalized sinc function (Fig. 1 A), which has C∞ continuity. If this function
is supported on the entire domain (i.e. Ai(u) = 1), then the typical artifacts
afflicting interpolating curves appear (ringing and overshooting of control points,
Fig. 1 F). To temper these effects they used a compactly-supported Ck function
for Ai(u). When Ii and Ai are multiplied together, the curve is still interpolated,
but the support of Ii is smoothly truncated to that of Ai. For Ai(u), they
employed uniform B-spline basis functions with variable support (Fig. 1 B).
The form of Ii(u)Ai(u) is shown in Fig. 1 C, and a PUPs curve employing this
weight-function is shown in Fig. 1 E.

The curve produced by the method has a number of properties which are
beneficial for geometric modeling:

1. affine invariance, resulting from partition of unity normalization,
2. Ck smoothness, dependent on the choice of A(u),
3. compact support, dependent on the support of A(u),
4. interpolation, resulting from I(u),
5. and a controllable tradeoff between smoothness and overshooting, by tuning

the support of A(u).

2.2 Zhang and Ma’s method

A class of interpolating curves, related to the preceding PUPs based method,
was proposed by Zhang and Ma [10]. Their method employed curves of the form

Q(u) =

n∑
i=0

Ri(u)Ci (6)
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with
Ri(u) = Ii(u)Ai(u) (7)

where, again, the normalized sinc function was proposed for Ii(u). In their case,
however, the choice of approximating function was

Ai(u) = e−α(u−i)
2

. (8)

It is important to note that in this case normalization by the sum of the weight-
functions does not occur (compare Eqs. 2 and 7), and thus affine invariance is
not guaranteed. Nevertheless, for appropriate choices of α, the method produces
similar curves to the PUPs based method.

When compared to the interpolation scheme proposed by Runions and Sama-
vati, the method proposed by Zhang and Ma has different properties:

1. It offers a tradeoff between approximate affine invariance, and a more focused
influence for Ri. Without the normalization step employed above, the Ri’s
do not sum to 1 unless α = 0. At the same time, Zhang and Ma show that
the difference from partition of unity is small even when α = 1/3.

2. The curves have C∞ smoothness.
3. Compact support can only be introduced by forcing Wi(u) = 0 outside

of some interval. Thus, it comes at the cost of smoothness. As with affine
invariance, the magnitude of the discontinuity introduced by truncating Wi

decreases quickly as α is decreased, due to the exponential form of Ri.
4. Interpolation, from the choice of I(u).
5. A controllable tradeoff between smoothness and overshooting, by tuning the

coefficient α.

Later, Zhang proposed an extension to their method which improved the ap-
proximation of partition of unity by introducing an additional term into their
basis functions [11]. Aside from this noteworthy difference, the improved method
exhibits the same properties as the original method.

3 Weight functions with C∞ and local support

Examining the interpolation methods described above we notice the following.
Runions and Samavati’s method provides unconditional affine invariance, com-
pact support, and Ck continuity (for a given finite k). In contrast, Zhang and
Ma’s method provides conditional (or approximate) affine invariance, compact
support and C∞ continuity. This raises the following question: can we obtain a
method with the positive characteristics of both methods? Specifically, can we
support unconditional

1. affine invariance,
2. C∞ continuity,
3. compact support,
4. and interpolation,
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5. while providing a controllable tradeoff between smoothness and overshoot-
ing?

To answer this question we use the PUPs framework and follow the methodology
employed by Runions and Samavati. Namely, given a set of properties we will seek
an appropriate weight-function to satisfy these conditions. The construction of
PUPs satisfies condition (1). We thus seek an appropriate weight-function with
the same form as Equation 4. As in the methods presented in Section 2, we
use the normalized sinc function for I(u), which satisfies condition (4). Thus, it
remains to choose our A(t) to satisfy constraints (2), (3) and (5).

k = 0.25

k = 1

k = 3

k = 9

k = 27

A

B

C

Fig. 2. The form of bump-functions described in the text, dashed vertical lines indicate
the radius of support (i.e. x = ±c). (A) The one sided function from Eq. 9. (B) The
two-sided bump function from Eq. 10. (C) A family of bump functions created using
Eq. 11 by varying k.

These conditions can be satisfied by identifying an A(t) with C∞, and vari-
able compact support. To motivate our choice of weight-function, we first exam-
ine the function

f(x) =

{
e−

1
x x > 0

0 otherwise
, (9)

which is shown in Fig. 2A. This function is zero for negative x-values and
smoothly approaches 0 as x → 0+ (i.e. all derivatives approach zero). Thus,
the support of this function is smoothly truncated to positive x values.

To limit the support of our function to an interval [−c, c], while maintain-
ing C∞ continuity, we modify the denominator of the exponent to introduce
singularities at ±c:

f(x) =

{
e

−1

c2−x2 x ∈ (−c, c)
0 otherwise

, (10)

which is shown in Fig. 2B. Now our function f(x) has the desired properties:
controllable compact support with C∞ smoothness.
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To obtain the A(u) used in our interpolation scheme we modify the above
form slightly to obtain:

A(u) =

{
e

−ku2

c2−u2 u ∈ (−c, c)
0 otherwise

, (11)

where k is a continuous degree-like shape parameter, which can be used in
tandem with the radius of support c to obtain a controllable tradeoff between
smoothness and overshooting. The form of A(u) differs from the f(x) in Equa-
tion 10, due to the introduction of ku2 into the numerator of the exponential
term. This modification gives A(u) a Gaussian-like form (see Fig. 2 C).

The resulting interpolation scheme is demonstrated in Figure. 3, where it is
used to reproduce cursive handwriting samples of the words July, August and
September. CINPACT splines inherit from PUPs the ability to modify the pa-
rameters of weight functions on a per-control-point basis (c.f. Fig. 6 in [7]). This
permits refined control over the character of the curve without requiring the
introduction of additional control points. In Figure 4 this permits the spades
symbol (A) 1 to be produced with a small number of control points (B), which
account for the sharp protrusions and clefts along contour as well as the differ-
ences in the character of the blade and handle. In comparison, using the scheme
of Zhang et al. [10], more points are required to approximate the form from (A)
with the same fidelity (see C and D).

4 Specifying tangents and higher derivatives of a curve

The ability to specify tangents at control points is important for many CAD ap-
plications, such as the design of fonts [4], and illustrations in professional software
packages such as Adobe Illustrator. Additionally, curves with tangent control are
widely employed in computer animation [6] (e.g. for keyframing). This problem
was not addressed by the methods proposed by Runions and Samavati [7] or
Zhang and Ma [10], which limits their utility. Here, we address this problem for
CINPACT and PUP splines by deriving a method for interpolating tangents and
higher order derivatives.

We first note that, given the formulation of PUPs in Eq. 4, we can add a
sum of weighted vectors to the equation without violating partition of unity (i.e.
the resulting curve is still affine invariant). This property is exploited to specify
the tangents T0, T1, · · · , Tn at the control points of a PUPs curve, yielding the
following form

QT (u) =

n∑
i=0

Ri(u)Pi +

n∑
i=0

Ei(u)Vi , (12)

where Vi are the vectors we add to the curve to meet our tangent constraints
and Ei are weight-functions localizing the contribution of these vectors 2. For

1 The spade symbol in Figure 4A was obtained from http://commons.wikimedia.

org/wiki/File:French_suits.svg.
2 Note that as Vi are vectors the Ei’s do not need to sum to 1.



8 CINPACT -splines

Fig. 3. Cursive writing generated using Interpolating CINPACT curves. The curves
spell out the words July, September and August. The bump function used in these
curves has radius of support c = 10 and shape parameter k = 10.

A

B C D

Fig. 4. Comparison of CINPACT curves to those produced using the method of Zhang
et al. [10]. A spades symbol (A) is reproduced using a CINPACT curve with 15 points
(B) as described in the text, and curves from the method of Zhang et al. with 15 (C)
and 24 (D) control points. In (B-D) the top row shows each curve and the bottom row
shows the curve overlain on the contour from (A).



CINPACT -splines 9

Fig. 5. The weight-function Ei used to interpolate tangents (blue) and its derivative
(red). Dashed lines indicate the support of Ei.

simplicity, let us write

QT (u) = Q(u) +
n∑
i=0

Ei(u)Vi, (13)

where Q(u) is the PUPs curve produced when tangent constraints are ignored.
The vector Vi is then chosen so that

QT (i)′ = Ti, (14)

which implies that

Ti = Q′(i) +

n∑
i=0

Ei(i)
′Vi. (15)

In general, this provides a system of equations that, for appropriate choices of Ei,
we can solve for Vi. When a global system of equations must be solved, however,
the choice of tangent at a given point may globally contribute to the resulting
Vi and thus the form of the curve. We note that by introducing three constraints
on the form of Ei we can compute the Vi’s directly (i.e. without solving a system
of equations). Additionally, the direct solution we obtain has the added benefit
of localizing the impact of tangent constraints on the form of the curve. These
three constraints are:

1. The support of Ei is limited to [i− c, i+ c] (similar to the CINPACT basis
functions).

2. Interpolating tangents should not interfere with the interpolation of posi-
tions:

Ei(j) = 0 (j ∈ N). (16)

3. Interpolation of a tangent at one site shouldn’t interfere with interpolation
at other sites:

Ei(j)
′ = δij (j ∈ N). (17)
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Enforcing these constraints simplifies Equation 15 to

Ti = Q′(i) + Vi. (18)

Thus, our Vi become (Fig. 6 A)

Vi = Ti −Q′(i). (19)

Ti
Q(ui)’

Vi

A B C

Fig. 6. CINPACT tangent interpolation. (A) The curve Q(u) is shown with desired
tangent constraints (orange arrows). The computation of Vi (blue arrow) from Q(ui)

′

(green arrow) and the tangent constraint Ti is illustrated. (B) The vectors Vi are
multiplied by WFs and added to Q(u) to yield QT (u) (red curve). Blue arrows indicate
the sum of weighted vectors at each parameter value. (C) The curve QT (u) smoothly
interpolates control points and tangents.

It now remains to find an appropriate choice of Ei, which satisfies our three
constraints. This problem is simplified by restricting our search to functions of
the following form

Ei(u) =
fi(u)gi(u)

(fi(u)gi(u))′(i)
, (20)

where (fi(u)gi(u))′(i) is the derivative of fi(u)gi(u) evaluated at i. In this case
it then suffices to choose fi(u) and gi(u) such that:

1. fi(j)gi(j) = 0 (j ∈ N),
2. (fi(j)gi(j))

′ = f ′i(j)gi(j) + fi(j)g
′
i(j) = δij (j ∈ N).

while maintaining compact support and C∞ smoothness. We note that these
conditions are met by setting

fi(u) = Ai(u), (21)

the bump functions from Equation 11, and:

gi(u) = u− i. (22)
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To enforce the second condition ( (fi(j)gi(j))
′ = δij), we use a radius of support

c ≤ 1 (if c ≥ 1 are desired it suffices to use fi(u) = Ii(u)Ai(u), where Ii(u) is
the normalized sinc function centered at i).

Thus, our tangent interpolation function is simply

Ei(u) =
(u− i)Ai(u)

((u− i)Ai(u))′(i)
. (23)

Note that if we do not wish to constrain the tangent at Pi, then Vi = 0 and the
corresponding term Ei(u)Vi can be omitted.

With this weight-function, a CINPACT curve that interpolates the specified
positions and tangents can be computed in three steps (Fig. 6):

1. Q(u) is evaluated using Eq. 1 and the interpolating WFs proposed in Sec-
tion 3.

2. Vi is calculated for each Ti (Eq. 19, Fig. 6 A).
3. The sum of weighted Vi’s is added to Q(u) (Fig. 6 B) to obtain QT (U) (Fig. 6

C).

As the WFs used for the control points and the tangents are C∞ with compact
support (and by definition

∑n
j=0Wj(u) 6= 0), the resulting curve is as well.

The basic construction employed to specify the first derivative at i (i.e. the
tangent) generalizes to higher order derivatives in a straightforward manner. In
particular, to specify Di,n the nth derivative at i we simply set gi(x) = (x− i)n,
and Vi,n to

Vi,n = Di,n −Q(n)
n−1(i) (24)

where Qn−1 is the curve resulting from the interpolation of the n−1th derivatives
(note that Q1 = QT ). This generalized construction is analogous to a Taylor
series expansion about the parameter value i, with the impact of the series’
contribution to the curve localized by the support of Ai(x).

A B C

Fig. 7. The contour in panel (A) is reproduced using the tangent interpolation scheme
(B,C). Tangents are visualized as orange arrows and control points as orange spheres.
The resulting curve is shown with (B) and without (C) visualizing tangents.

The method for specifying tangents is demonstrated in Figure 7. In the figure,
the contour provided in (A) is reproduced using the control points and tangents
shown in (B). Using tangent constraints we are able to approximate the contour
using 27 control points (compared to Fig. 1 E where 49 control points were used).
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In some instances it is cumbersome to specify the tangent at each point
(e.g. interactive curve modeling). In such instances, to ease the specification of
curves which interpolate a position and tangent, it is useful to generate tangents
automatically, from the given set of control points. The Catmull-Rom spline [2],
widely employed within computer animation, is a relatively popular method for
achieving this goal. These curves are cubic Hermite splines [3, pp. 102–106],
where the tangent at each control point Pi is calculated from the neighboring
control points

Ti =
Pi+1 − Pi−1

2
. (25)

In Figure 8 (A), an interpolating CINPACT spline with tangents calculated us-
ing Equation 25 is compared to the corresponding Catmull-Rom spline. The
curves approximate the contour provided in Figure 7 (A). Note that the CIN-
PACT spline has more evenly distributed curvature, which, in this case, better
approximates the original contour (compare panels Figure 8 (B) and (C) with
Figure 7 (A)).

A B C

Fig. 8. The contour from Figure 7 (A) is reproduced using a Catmull-Rom spline (red
contour) and a CINPACT spline (black contour) with the same tangents specified at
each control point. In (A) the curves are overlaid and visualized with the control points
and tangent vectors. The curves are shown individually in (B) and (C).

5 Approximating curves

Our function A(x) has a plot similar to that of a B-spline basis function. Given
this, it makes sense to examine the curves generated by the weight-functions

Wi(u) = A(u− i), (26)

which produces curves that approximate control points. The resulting curves are
well-behaved, exhibiting affine invariance, compact support and C∞ continuity.
Furthermore, as shown in Fig. 9 the curves are similar in character to B-splines.
Here, however, the parameter k serves as a continuous degree-like parameter. To
quantify this statement we have numerically fit W (u) to uniform B-spline basis
functions of different orders. Measuring the goodness of fit requires a measure of



CINPACT -splines 13

distance between two functions. To this end we employ the commonly used L2

norm for functions:

d(f, g) =

[∫ ∞
−∞

(f(u)− g(u))2du

]1/2
. (27)

Using this distance we can estimate the relative error of the fit of the weight
function W (u) to the degree d B-spline basis function Bd(u) with the following
equation

RelativeError(W,Bd) =
d(W,Bd)

d(0, Bd)
, (28)

where the division by the distance between Bd and the constant function 0
normalizes the distance between W and Bd.

The results of our numerical fitting are reported in Table 1. We observe that
by varying k and the support c we can approximate B-spline basis functions of
increasing order very well. The particular values of k and c have been determined
by numerical optimization, and for B-spline basis functions of degree 2 and higher
we obtain small differences between our weight-function and the basis function
(less than 0.7% for d > 2).

The close correspondence between the forms of CINPACT and B-spline
curves is illustrated in Figure 9 for quadratic (A-C) and cubic (D-F) B-spline
curves. While the overall approximation is very good, the CINPACT curves,
being C∞, exhibit less variation (as seen in inset of the bunny tail shown in C).

Degree d(Bd, 0) d(W,Bd) k value radius of support c scalar weight Relative error

1 0.8165 0.0499 38.94 3.976 0.916264 0.06
2 0.7416 0.0122 25.83 3.898 0.761562 0.016
3 0.6924 0.0025 17.27 3.684 0.662606 0.0036
4 0.6561 0.0021 28.48 5.158 0.599502 0.0032
5 0.6276 0.00055 28.00 5.574 0.549665 0.00088
6 0.6044 0.0018 23.83 5.560 0.509389 0.0029
7 0.5850 0.0033 21.31 5.626 0.476678 0.0056

0.0020 39.84 7.587 0.477571 0.0034
8 0.5683 0.0038 21.05 5.919 0.450372 0.0067

0.00097 33.46 7.365 0.452382 0.0017
9 0.5538 0.0015 31.94 7.579 0.429608 0.0027

Table 1: Parameter values for the best-fit C∞ weight-functions W for Bd, the B-
spline basis of degree d. The second column shows the distance between each Bd and
the constant function 0. The distance between Bd and the best-fit W is shown in the
third column, with corresponding parameters for W given in the next 3 columns. The
final column provides the relative error of the fit (i.e. d(W,Bd)/d(Bd, 0)).

These results show that uniform B-spline functions differ only slightly from
a C∞ function with a reasonably simple form. Conversely, this also means that
when the parameters k and c are chosen appropriately, the resulting CINPACT
curves can be subdivided using B-spline filters with a relatively small error.
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More broadly, these results show that CINPACT splines, like PUPs, can
be used to generate high quality approximating as well as interpolating curves.
This can be contrasted against the methods proposed by Zhang and Ma. [10,
11], which only support interpolation.

A B C

D E F

Fig. 9. A comparison of CINPACT and B-spline curves. (A) A CINPACT curve created
from WFs with k = 25.83 and c = 3.898. (B) The curve from (A) is compared to the
quadratic B-spline curve generated by the same control points (red curve); the inset is
shown in (C). (D) A CINPACT curve created from WFs with k = 17.27 and c = 3.684.
(E) The curve from (D) is compared to the cubic B-spline curve generated by the same
control points (red curve); the inset is shown in (F).

6 Conclusions

In this paper we have presented CINPACT-splines, which support interpola-
tion and approximation of control points. The resulting curves have a simple,
piecewise exponential form. These splines are generated using a class of bump-
functions as WFs, and guarantee that the resulting curves are C∞, with com-
pact support and affine invariance. In this sense, the interpolating CINPACT-
splines are an improvement on the previously proposed interpolation methods of
Runions and Samavati [7] and Zhang and Ma [10, 11]. Additionally, we provide a
method for the interpolation of tangents, a common requirement for the curves
used in animation and interactive modeling applications. This, in particular, was
not considered in the works of Runions and Samavati [7] and Zhang and Ma [10,
11].
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The approximating CINPACT-splines behave similarly to B-splines, but do
not sacrifice continuity in order to achieve compact support. Additionally, the
shape parameter k provides a continuous degree like parameter. Consequently,
unlike B-splines, the weight-functions are not defined by a recursive relation, but
have a simple closed form. Furthermore, when curve fitting is performed the pa-
rameter k and radius of support c can be independently optimized as continuous
parameters. In contrast, for B-spline curves the degree determines the support,
and when optimized during curve fitting introduces a discrete parameter. These
advantages highlight the potential of CINPACT-splines as an alternative to B-
spline curves. As the curves considered by Runions and Samavti [7] employed
b-spline basis functions CINPACT-splines likewise offer a number of advantages
over the curves considered in [7]. By employing closed form exponentials (bump-
functions) in place of b-spline basis functions our curves have a relatively simple
implementation, but can still provide the basis for a comprehensive curve mod-
eling package.

A key goal of future work on CINPACT-splines will be to further examine
their relation to B-splines. In this paper we considered the fitting of CINPACT
weight-functions to uniform B-spline basis functions, which assume a uniform
spacing of knot values. It is an open question, however, what class of bump-
function is required to reproduce arbitrary B-spline basis functions (i.e. those
generated by non-uniform knot values). A related problem is the local refine-
ment of weight-functions, which for B-splines is accomplished through knot in-
sertion [1]. Pursuing these two directions should allow CINPACT and B-splines
to be used interchangeably, opening the door to their widespread use in CAD
applications.
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